

PHP 7 Programming
Cookbook

Over 80 recipes that will take your PHP 7 web
development skills to the next level!

Doug Bierer

BIRMINGHAM - MUMBAI

PHP 7 Programming Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1260816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-344-6

www.packtpub.com

www.packtpub.com

Credits

Author
Doug Bierer

Reviewers
Salvatore Pappalardo

Vincenzo Provenza

Commissioning Editor
Kunal Parikh

Acquisition Editor
Kirk D'costa

Content Development Editor
Merint Thomas Mathew

Technical Editor
Madhunikita Sunil Chindarkar

Copy Editor
Safis Editing

Project Coordinator
Suzanne Coutinho

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

Foreword

With PHP 7, we get a host of new features and improvements, such as abstract syntax tree,
throwable errors, scalar type hints, return type declarations, speed improvements, and so
much more.

The question facing PHP developers these days is not "Should I use the new features?", but
"How do I implement these features to build better applications faster?"

I remember building applications in PHP 4. It was a simpler time for PHP developers as it
could be intermingled with HTML and everything was in one file. Instead of frameworks, we
had libraries of functions that got included. Applications were basically just CRUD desktop
applications that we figured out how to shovel onto the web.

Application development has changed several times since then. New frameworks, such as
AJAX, PHPUnit, composer, and API-First, were introduced.

All of these things, and many others, have influenced how PHP developers build applications.
Today, you will be laughed out of a job if you have a paged-based application that mixed HTML
and PHP. So, what will you do? How will you build modern PHP applications and APIs? How will
you leverage all the new tools that PHP gives you to build faster, better, stronger applications?
I am so glad you asked.

My friend Doug Bierer has the answer for you. This isn't YAUT (Yet Another Useless Tome) of
information that you will put on a shelf and never use. The book you are holding in your hands
is destined to, quickly, be a part of your ducktape library. (Every developer has a ducktape
library. It is made up of those books you refer to so often that they are now held together by
ducktape.)

Doug takes the time to show you the new features that you need to understand, like so many
developer books out there. Where this book is different is that the author takes the time to
show you how to solve real-world problems using these new tools. Not only do you learn, but
you can immediately solve problems with what you learn.

You don't have to be an expert in PHP to use advanced concepts. However, you do have
to learn, understand, and use these advanced concepts if you ever hope to grow as a
programmer. This book will help you down your path to becoming a better programmer.

Cal Evans

Nomad PHP
Nerd Herder for the World Wide Herd

About the Author

Doug Bierer has been hooked on computers since his first program, written in Dartmouth
BASIC on a DEC PDP-8, in 1971. In his wide-ranging career, this author has been a
professional contract programmer since 1978, having written applications in BASIC, PL/I,
assembler, FORTH, C, C++, dBase/FoxBase/Clipper, Pascal, Perl, Java, and PHP. He deployed
his first website in 1993 while living in San Francisco. He speaks four languages, has traveled
extensively, and has lived in the USA, France, the Netherlands, England, Sweden, Scotland,
and Thailand. He also spent some years doing Linux system administration and TCP/IP
networking. He is also an accomplished musician (he has written over 60 songs) as well as a
writer, under the pen name of Douglas Alan.

Doug's own company is unlikelysource.com, which specializes in consulting, PHP programming,
website development, and training (primarily for Zend Technologies Ltd and Rogue Wave
Software Inc.

His works of fiction published on https://www.lulu.com/ are The End, And Then? and
Further Indications. Some of his technical works for O'Reilly Media are Learning PHP and
MySQL, Learning PHP Security, Learning MongoDB, and Learning Doctrine.

First and foremost, I would like to dedicate this book to my mother, Betty
Bierer, who passed away in May 2016. She encouraged me all my life, and
applauded my accomplishments (no matter how bad!). She attended all
my music concerts, bought all my CDs, and read all my books (even if she
did not understand them). I would also like to thank my long-suffering wife,
Siri, who patiently endured the hours it took me to write this book without
complaint. (She did, however, make threats if I agreed to take on another
one... negotiations are ongoing.) Finally, I would like to thank a number
of notables in the PHP community who let me bounce ideas off them or
offered inspiration. These include, Matthew Weir O'Phinney, Cal Evans, Daryl
Wood, Susie Pollock, Salvatore Pappalardo, Slavey Karadzhov, and Clark
Everetts.

https://www.lulu.com/

About the Reviewers

Salvatore Pappalardo, a tech geek from birth, has been a software engineer since 2002.
He loves "from scratch" development. He's a tech lover, sci-fi reader, movie enthusiast, and a
TED talks addict.

Vincenzo Provenza is a web developer with more than 5 years of experience with different
technologies and programming languages (mainly PHP and JavaScript). He loves to travel and
read.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

i

Table of Contents
Preface	 v
Chapter 1: Building a Foundation	 1

Introduction	 1
PHP 7 installation considerations	 1
Using the built-in PHP web server	 6
Defining a test MySQL database	 7
Installing PHPUnit	 8
Implementing class autoloading	 9
Hoovering a website	 12
Building a deep web scanner	 15
Creating a PHP 5 to PHP 7 code converter	 18

Chapter 2: Using PHP 7 High Performance Features	 25
Introduction	 25
Understanding the abstract syntax tree	 26
Understanding differences in parsing	 30
Understanding differences in foreach() handling	 32
Improving performance using PHP 7 enhancements	 36
Iterating through a massive file	 41
Uploading a spreadsheet into a database	 44
Recursive directory iterator	 47

Chapter 3: Working with PHP Functional Programming	 53
Introduction	 53
Developing functions	 54
Hinting at data types	 59
Using return value data typing	 63
Using iterators	 67
Writing your own iterator using generators	 75

ii

Table of Contents

Chapter 4: Working with PHP Object-Oriented Programming	 81
Introduction	 81
Developing classes	 82
Extending classes	 88
Using static properties and methods	 96
Using namespaces	 100
Defining visibility	 105
Using interfaces	 109
Using traits	 115
Implementing anonymous classes	 122

Chapter 5: Interacting with a Database	 129
Introduction	 129
Using PDO to connect to a database	 130
Building an OOP SQL query builder	 143
Handling pagination	 146
Defining entities to match database tables	 150
Tying entity classes to RDBMS queries	 155
Embedding secondary lookups into query results	 164
Implementing jQuery DataTables PHP lookups	 168

Chapter 6: Building Scalable Websites	 173
Introduction	 173
Creating a generic form element generator	 174
Creating an HTML radio element generator	 181
Creating an HTML select element generator	 185
Implementing a form factory	 190
Chaining $_POST filters	 196
Chaining $_POST validators	 210
Tying validation to a form	 215

Chapter 7: Accessing Web Services	 223
Introduction	 223
Converting between PHP and XML	 223
Creating a simple REST client	 227
Creating a simple REST server	 237
Creating a simple SOAP client	 247
Creating a simple SOAP server	 250

Chapter 8: Working with Date/Time and International Aspects	 257
Introduction	 257
Using emoticons or emoji in a view script	 258
Converting complex characters	 260
Getting the locale from browser data	 263

iii

Table of Contents

Formatting numbers by locale	 266
Handling currency by locale	 270
Formatting date/time by locale	 276
Creating an HTML international calendar generator	 280
Building a recurring events generator	 289
Handling translation without gettext	 297

Chapter 9: Developing Middleware	 307
Introduction	 307
Authenticating with middleware	 308
Using middleware to implement access control	 314
Improving performance using the cache	 323
Implementing routing	 336
Making inter-framework system calls	 342
Using middleware to cross languages	 350

Chapter 10: Looking at Advanced Algorithms	 355
Introduction	 355
Using getters and setters	 356
Implementing a linked list	 362
Building a bubble sort	 368
Implementing a stack	 371
Building a binary search class	 373
Implementing a search engine	 377
Displaying a multi-dimensional array and accumulating totals	 384

Chapter 11: Implementing Software Design Patterns	 391
Introduction	 391
Creating an array to object hydrator	 392
Building an object to array hydrator	 395
Implementing a strategy pattern	 397
Defining a mapper	 407
Implementing object-relational mapping	 418
Implementing the Pub/Sub design pattern	 429

Chapter 12: Improving Web Security	 435
Introduction	 435
Filtering $_POST data	 436
Validating $_POST data	 440
Safeguarding the PHP session	 443
Securing forms with a token	 449
Building a secure password generator	 455
Safeguarding forms with a CAPTCHA	 461
Encrypting/decrypting without mcrypt	 475

iv

Table of Contents

Chapter 13: Best Practices, Testing, and Debugging	 483
Introduction	 483
Using Traits and Interfaces	 484
Universal exception handler	 489
Universal error handler	 493
Writing a simple test	 497
Writing a test suite	 515
Generating fake test data	 518
Customizing sessions using session_start parameters	 531

Appendix: Defining PSR-7 Classes	 537
Introduction	 537
Implementing PSR-7 value object classes	 537
Developing a PSR-7 Request class	 557
Defining a PSR-7 Response class	 572

Index	 579

v

Preface
PHP 7 has taken the open source community by storm, breaking records for speed, which is,
metaphorically, causing heads to turn. In its most fundamental sense, the core engineering
team has effected a major rewrite of the language but has still managed to maintain
backward compatibility to a high degree. The impact of these internal changes is outwardly
manifested in an almost 200% increase in speed, with significant savings in memory usage.
From a development perspective, changes in how commands are parsed along with a uniform
variable syntax have introduced new ways to write code which were simply not possible in the
earlier versions of PHP. By the same token, any developer who is unaware of how commands
are interpreted in PHP 7 can fall into unseen traps, which causes the code to malfunction.
Accordingly, the mandate of this book is to illustrate new and exciting ways to write code and
to point out any areas of incompatibility with previous versions of PHP. It is also important to
note that this book addresses both PHP 7.0 and 7.1.

What this book covers
Chapter 1, Building a Foundation, helps you get started with the initial setup and configuration
of your PHP 7 development environment. We will also present a few hard-hitting initial recipes,
which show off new features of PHP 7.

Chapter 2, Using PHP 7 High Performance Features, takes a deep dive into the new features
of the language. You will be introduced to the concepts of the abstract syntax tree and uniform
variable syntax, among others, and you will learn how these can affect day-to-day programming.
This is followed by recipes that take advantage of PHP 7 performance improvements, including
signif﻿icant new changes in the foreach() loop handling.

Chapter 3, Working with PHP Functional Programming, emphasizes how PHP has always had
the capability of working with programmer-defined libraries of functions rather than classes,
and PHP 7 is no exception. In this chapter, we will take a closer look at improvements in the
handling of functions, including the ability to provide "type hints" involving basic data types,
such as integer, float, Boolean, and string for both input and output. We will also provide
extensive coverage of iterators from the Standard PHP Library, as well as how to write your
own iterators by taking advantage of improved handling of generators.

Preface

vi

Chapter 4, Working with PHP Object-Oriented Programming, explores the basics of PHP
object-oriented programming. Quickly getting beyond the basics, you will learn how to use PHP
namespaces and traits. Architectural considerations will be covered, including how to best use
interfaces. Finally, an exciting new PHP 7 feature, anonymous classes, will be discussed along
with practical examples of its use.

Chapter 5, Interacting with a Database, explores the ability to have your application read
from and write to a database, which is a critical part of any modern website. What is widely
misunderstood, however, is the proper use of the PHP Data Objects (PDO) extension. This
chapter will present thorough coverage of PDO, which in turn will allow your applications to
interact with most major databases, including MySQL, Oracle, PostgreSQL, IBM DB2, and
Microsoft SQL Server, without having to learn any other set of commands. In addition, we
will cover advanced techniques, such as working with Domain Model Entities, performing
embedded secondary lookups, and implementing jQuery DataTable lookups using PHP 7.

Chapter 6, Building Scalable Websites, delves into one of the classic problems faced by PHP
developers building interactive websites—hardcoding HTML forms and later having to perform
maintenance. A neat and efficient object-oriented approach is presented in this chapter, which,
with a minimal amount of code, lets you generate entire HTML forms that can easily be changed
in the initial configuration. Another equally vexing problem is how to filter and validate data
posted from a form. In this chapter, you will learn how to develop an easily configurable filtering
and validation factory, which can then be applied to any incoming post data.

Chapter 7, Accessing Web Services, covers something that is becoming more and more
important to web development—the ability to publish or consume web services. This chapter
covers the two key approaches: SOAP and REST. You will learn how to implement SOAP and
REST servers and clients. Further more, the recipes presented use the Adapter design pattern,
which allows a considerable degree of customization, meaning that you are not locked into a
specific design paradigm.

Chapter 8, Working with Date/Time and International Aspects, helps you cope with the fierce
competition owing to the growth of the World Wide Web (WWW), leading to more and more
customers looking to expand their business into international markets. This chapter will get
you up to speed on all aspects of internationalization, including the use of emoticons, complex
characters, and translation. Further more, you will be shown how to acquire and handle
regional information, including language settings, number and currency formatting, as well as
date and time. Additionally, we will cover recipes that show you how to create internationalized
calendars, which can handle recurring events.

Chapter 9, Developing Middleware, deals with the hottest topic in the open source community
right now—middleware. As the name implies, middleware is software that can be snapped into
place, which adds value to an existing application without having to alter the source code of
that application. In this chapter, you will be shown a series of recipes, implemented as
PSR-7-compliant middleware (see Appendix, Defining PSR-7 Classes, for more details),
which perform authentication, access control, caching, and routing.

Preface

vii

Chapter 10, Looking at Advanced Algorithms, helps you understand that, as a developer,
given the tremendous number of programmers and companies competing for the same
business, it is extremely important that you gain mastery of key advanced algorithms. In this
chapter, using PHP 7, you will learn the theory and application of getters and setters, linked
lists, bubble sorts, stacks, and binary search. In addition, this chapter examines how to use
these techniques to implement a search engine, and how to handle multi-dimensional arrays.

Chapter 11, Implementing Software Design Patterns, works on an important aspect of object-
oriented programming, that is, an understanding of key software design patterns. Without this
knowledge, when applying for a new position or attempting to attract new customers, you, as
a developer, will be at a severe disadvantage. This chapter covers several critically important
patterns including Hydration, Strategy, Mapper, Object Relational Mapping, and Pub/Sub.

Chapter 12, Improving Web Security, addresses issues arising from the pervasive nature of
the Internet today. We see cyber attacks being launched with greater and greater frequency,
often with devastating financial and personal loss. In this chapter, we will present solid
practical recipes that, if implemented, will give your websites an exponential boost in terms of
safety and security. Topics covered include filtering and validation, session protection, secure
form submission, secure password generation, and the use of CAPTCHAs. In addition, a recipe
is presented that will show you how to encrypt and decrypt data without using the PHP mcrypt
extension, which is deprecated in PHP 7.1 (and will ultimately be removed from the language).

Chapter 13, Best Practices, Testing, and Debugging, covers best practices and debugging
of your code to produce well written code that works. In this chapter, you will also learn how
to set up and create unit tests, handle unexpected errors and exceptions, and generate test
data. Several new PHP 7 features are presented, including how PHP 7 can "throw" errors. It
is important to note that best practices are identified throughout the book, not just in this
chapter!

Appendix, Defining PSR-7 Classes, addresses recently accepted PHP Standards
Recommendation 7, which defines interfaces used in conjunction with middleware. In this
appendix, you will be shown solid implementations of PSR-7 classes that include value
objects, such as URI, body, and file upload, as well as request and response objects.

What you need for this book
All you need to successfully implement the recipes presented in this book will be a computer,
100MB of extra disk space, and a text or code editor (not a word processor!). The first chapter
will cover how to set up a PHP 7 development environment. Having a web server is optional
as PHP 7 includes a development web server. An Internet connection is not required, but it
might be useful to download code (such as the set of PSR-7 interfaces), and review PHP 7.x
documentation.

Preface

viii

Who this book is for
This book is for software architects, technical managers, developers from intermediate to
advanced, or just the curious. You will need to have a basic knowledge of PHP programming,
especially OOP.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

ix

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Finally,
take the class LotsProps defined in the third bullet point and place it in a separate file,
chap_10_oop_using_getters_and_setters_magic_call.php."

A block of code is set as follows:

protected static function loadFile($file)
{
 if (file_exists($file)) {
 require_once $file;
 return TRUE;
 }
 return FALSE;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

$params = [
 'db' => __DIR__ . '/../data/db/php7cookbook.db.sqlite'
];
$dsn = sprintf('sqlite:' . $params['db']);

Any command-line input or output is written as follows:

cd /path/to/recipes

php -S localhost:8080

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "When the Purchases
button is clicked, initial purchase info appears."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

x

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

xi

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff Using built-in Linux utilities or 7-Zip / PeaZip

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/PHP-7-Programming-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/PHP-7-Programming-Cookbook
https://github.com/PacktPublishing/PHP-7-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

xii

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

Building a Foundation

In this chapter, we will cover the following topics:

ff PHP 7 installation considerations

ff Using the built-in PHP web server

ff Defining a test MySQL database

ff Installing PHPUnit

ff Implementing class autoloading

ff Hoovering a website

ff Building a deep web scanner

ff Creating a PHP 5 to PHP 7 code converter

Introduction
This chapter is designed as a quick start that will get you up and running on PHP 7 so that you
can start implementing the recipes right away. The underlying assumption for this book is that
you already have a good knowledge of PHP and programming. Although this book will not go
into detail about the actual installation of PHP, given that PHP 7 is relatively new, we will do
our best to point out the quirks and gotchas you might encounter during a PHP 7 installation.

PHP 7 installation considerations
There are three primary means of acquiring PHP 7:

ff Downloading and installing directly from the source code

ff Installing pre-compiled binaries

ff Installing a *AMP package (that is, XAMPP, WAMP, LAMP, MAMP, and so on)

1

Building a Foundation

2

How to do it…
The three methods are listed in order of difficulty. However, the first approach, although
tedious, will give you the most finite control over extensions and options.

Installing directly from source
In order to utilize this approach, you will need to have a C compiler available. If you are
running Windows, MinGW is a free compiler that has proven popular. It is based on the GNU
Compiler Collection (GCC) compiler provided by the GNU project. Non-free compilers include
the classic Turbo C compiler from Borland, and, of course, the compiler that is preferred
by Windows developers is Visual Studio. The latter, however, is designed mainly for C++
development, so when you compile PHP, you will need to specify C mode.

When working on an Apple Mac, the best solution is to install the Apple Developer Tools.
You can use the Xcode IDE to compile PHP 7, or run gcc from a terminal window. In a Linux
environment, from a terminal window, run gcc.

When compiling from a terminal window or command line, the normal procedure is as follows:

ff configure

ff make

ff make test

ff make install

For information on configuration options (that is, when running configure), use the help
option:

configure --help

Errors you might encounter during the configuration stage are mentioned in the following
table:

Error Fix
configure: error: xml2-
config not found. Please
check your libxml2
installation

You just need to install libxml2. For this error,
please refer to the following link:

http://superuser.com/
questions/740399/how-to-fix-php-
installation-when-xml2-config-is-
missing

configure: error: Please
reinstall readline - I
cannot find readline.h

Install libreadline-dev

http://superuser.com/questions/740399/how-to-fix-php-installation-when-xml2-config-is-missing
http://superuser.com/questions/740399/how-to-fix-php-installation-when-xml2-config-is-missing
http://superuser.com/questions/740399/how-to-fix-php-installation-when-xml2-config-is-missing
http://superuser.com/questions/740399/how-to-fix-php-installation-when-xml2-config-is-missing

Chapter 1

3

Error Fix
configure: WARNING:
unrecognized options:
--enable-spl, --enable-
reflection, --with-libxml

Not a big deal. These options are defaults and don't
need to be included. For more details, please refer to
the following link:

http://jcutrer.com/howto/linux/how-
to-compile-php7-on-ubuntu-14-04

Installing PHP 7 from pre-compiled binaries
As the title implies, pre-compiled binaries are a set of binary files that somebody else has
kindly compiled from PHP 7 source code and has made available.

In the case of Windows, go to http://windows.php.net/. You will find a good set of tips
in the left column that pertain to which version to choose, thread safe versus non-read safe,
and so forth. You can then click on Downloads and look for the ZIP file that applies to your
environment. Once the ZIP file has been downloaded, extract the files into the folder of your
choice, add php.exe to your path, and configure PHP 7 using the php.ini file.

To install the pre-compiled binaries on a Mac OS X system, it is best to involve a package
management system. The ones recommended for PHP include the following:

ff MacPorts

ff Liip

ff Fink

ff Homebrew

In the case of Linux, the packaging system used depends on which Linux distribution you are
using. The following table, organized by Linux distribution, summarizes where to look for the
PHP 7 package.

Distribution Where to find PHP 7 Notes
Debian packages.debian.org/stable/php

repos-source.zend.com/zend-
server/early-access/php7/php-
7*DEB*

Use this command:
sudo apt-get install
php7

Alternatively, you can
use a graphical package
management tool such as
Synaptic.

Make sure you select php7
(and not php5).

http://jcutrer.com/howto/linux/how-to-compile-php7-on-ubuntu-14-04
http://jcutrer.com/howto/linux/how-to-compile-php7-on-ubuntu-14-04
http://windows.php.net/
packages.debian.org/stable/php repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.debian.org/stable/php repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.debian.org/stable/php repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.debian.org/stable/php repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.debian.org/stable/php repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*

Building a Foundation

4

Distribution Where to find PHP 7 Notes
Ubuntu packages.ubuntu.com

repos-source.zend.com/zend-
server/early-access/php7/php-
7*DEB*

Use this command:

sudo apt-get install
php7

Be sure to choose the right
version of Ubuntu.

Alternatively, you can
use a graphical package
management tool such as
Synaptic.

Fedora / Red
Hat

admin.fedoraproject.org/pkgdb/
packages

repos-source.zend.com/zend-
server/early-access/php7/php-
7*RHEL*

Make sure you are the root
user:
su

Use this command:
dnf install php7

Alternatively, you can
use a graphical package
management tool such
as the GNOME Package
Manager.

OpenSUSE software.opensuse.org/package/
php7

Use this command:
yast -i php7

Alternatively, you can run
zypper, or use YaST as a
graphical tool.

Installing a *AMP package
AMP refers to Apache, MySQL, and PHP (also Perl and Python). The * refers to Linux,
Windows, Mac, and so on (that is, LAMP, WAMP, and MAMP). This approach is often the
easiest, but gives you less control over the initial PHP installation. On the other hand, you can
always modify the php.ini file and install additional extensions to customize your installation
as needed. The following table summarizes a number of popular *AMP packages:

Package Where is it found Free? Supports*
XAMPP www.apachefriends.org/download.

html
Y WML

AMPPS www.ampps.com/downloads Y WML
MAMP www.mamp.info/en Y WM
WampServer sourceforge.net/projects/

wampserver
Y W

packages.ubuntu.com repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.ubuntu.com repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.ubuntu.com repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.ubuntu.com repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
packages.ubuntu.com repos-source.zend.com/zend-server/early-access/php7/php-7*DEB*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
admin.fedoraproject.org/pkgdb/packages repos-source.zend.com/zend-server/early-access/php7/php-7*RHEL*
software.opensuse.org/package/php7
software.opensuse.org/package/php7
www.apachefriends.org/download.html
www.apachefriends.org/download.html
www.ampps.com/downloads
www.mamp.info/en
sourceforge.net/projects/wampserver
sourceforge.net/projects/wampserver

Chapter 1

5

Package Where is it found Free? Supports*
EasyPHP www.easyphp.org Y W
Zend Server www.zend.com/en/products/zend_

server
N WML

In the preceding table, we've enlisted the *AMP packages where * is replaced by W for
Windows, M for Mac OS X, and L for Linux.

There's more…
When you install a pre-compiled binary from a package, only core extensions are installed.
Non-core PHP extensions must be installed separately.

It's worth noting that PHP 7 installation on cloud computing platforms will often follow the
installation procedure outlined for pre-compiled binaries. Find out if your cloud environment
uses Linux, Mac, or Windows virtual machines, and then follow the appropriate procedure as
mentioned in this recipe.

It's possible that PHP 7 hasn't yet reached your favorite repository for pre-compiled binaries.
You can always install from source, or consider installing one of the *AMP packages (see the
next section). An alternative for Linux-based systems is to use the Personal Package Archive
(PPA) approach. Because PPAs have not undergone a rigorous screening process, however,
security could be a concern. A good discussion on security considerations for PPAs is found
at http://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-
system-and-what-are-some-red-flags-to-watch-out-fo.

See also
General installation considerations, as well as instructions for each of the three major OS
platforms (Windows, Mac OS X, and Linux), can be found at http://php.net/manual/en/
install.general.php.

The website for MinGW is http://www.mingw.org/.

Instructions on how to compile a C program using Visual Studio can be found at
https://msdn.microsoft.com/en-us/library/bb384838.

Another possible way to test PHP 7 is by using a virtual machine. Here are a couple of tools
with their links, which might prove useful:

ff Vagrant: https://github.com/rlerdorf/php7dev (php7dev is a Debian 8
Vagrant image that is preconfigured for testing PHP apps and developing extensions
across many versions of PHP)

ff Docker: https://hub.docker.com/r/coderstephen/php7/ (it contains a
PHP7 Docker container)

www.easyphp.org
www.zend.com/en/products/zend_server
www.zend.com/en/products/zend_server
http://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-system-and-what-are-some-red-flags-to-watch-out-fo
http://askubuntu.com/questions/35629/are-ppas-safe-to-add-to-my-system-and-what-are-some-red-flags-to-watch-out-fo
http://php.net/manual/en/install.general.php
http://php.net/manual/en/install.general.php
http://www.mingw.org/
https://msdn.microsoft.com/en-us/library/bb384838
https://github.com/rlerdorf/php7dev
https://hub.docker.com/r/coderstephen/php7/

Building a Foundation

6

Using the built-in PHP web server
Aside from unit testing and running PHP directly from the command line, the obvious way to
test your applications is to use a web server. For long-term projects, it would be beneficial to
develop a virtual host definition for a web server that most closely mirrors the one used by
your customer. Creating such definitions for the various web servers (that is, Apache, NGINX,
and so on) is beyond the scope of this book. Another quick and easy-to-use alternative (which
we have room to discuss here) is to use the built-in PHP 7 web server.

How to do it…
1.	 To activate the PHP web server, first change to the directory that will serve as the

base for your code.

2.	 You then need to supply the hostname or IP address and, optionally, a port. Here is
an example you can use to run the recipes supplied with this book:
cd /path/to/recipes
php -S localhost:8080

You will see output on your screen that looks something like this:

Chapter 1

7

3.	 As the built-in web server continues to service requests, you will also see access
information, HTTP status codes, and request information.

4.	 If you need to set the web server document root to a directory other than the current
one, you can use the -t flag. The flag must then be followed by a valid directory path.
The built-in web server will treat this directory as if it were the web document root,
which is useful for security reasons. For security reasons, some frameworks, such as
Zend Framework, require that the web document root is different from where your
actual source code resides.

Here is an example using the -t flag:
php -S localhost:8080 -t source/chapter01

Here is an example of the output:

Defining a test MySQL database
For test purposes, along with the source code for the book, we've provided an SQL file with
sample data at https://github.com/dbierer/php7cookbook. The name of the
database used in the recipes for this book is php7cookbook.

https://github.com/dbierer/php7cookbook

Building a Foundation

8

How to do it…
1.	 Define a MySQL database, php7cookbook. Also assign rights to the new database

to a user called cook with the password book. The following table summarizes these
settings:

Item Notes
Database name php7cookbook

Database user cook

Database user password book

2.	 Here is an example of SQL needed to create the database:
CREATE DATABASE IF NOT EXISTS dbname DEFAULT CHARACTER SET utf8
COLLATE utf8_general_ci;
CREATE USER 'user'@'%' IDENTIFIED WITH mysql_native_password;
SET PASSWORD FOR 'user'@'%' = PASSWORD('userPassword');
GRANT ALL PRIVILEGES ON dbname.* to 'user'@'%';
GRANT ALL PRIVILEGES ON dbname.* to 'user'@'localhost';
FLUSH PRIVILEGES;

3.	 Import the sample values into the new database. The import file, php7cookbook.
sql, is located at https://github.com/dbierer/php7cookbook/blob/
master/php7cookbook.sql.

Installing PHPUnit
Unit testing is arguably the most popular means of testing PHP code. Most developers will
agree that a solid suite of tests is a requirement for any properly developed project. Few
developers actually write these tests. A lucky few have an independent testing group that
writes the tests for them! After months of skirmishing with the testing group, however, the
remains of the lucky few tend to grumble and complain. In any event, any book on PHP would
not be complete without at least a nod and a wink towards testing.

The place to find the latest version of PHPUnit is https://phpunit.de/. PHPUnit5.1
and above support PHP 7. Click on the link for the desired version, and you will download
a phpunit.phar file. You can then execute commands using the archive, as follows:

php phpunit.phar <command>

The phar command stands for PHP Archive. The technology is based on
tar, which itself was used in UNIX. A phar file is a collection of PHP files
that are packed together into a single file for convenience.

https://github.com/dbierer/php7cookbook/blob/master/php7cookbook.sql
https://github.com/dbierer/php7cookbook/blob/master/php7cookbook.sql
https://phpunit.de/

Chapter 1

9

Implementing class autoloading
When developing PHP using an object-oriented programming (OOP) approach, the
recommendation is to place each class in its own file. The advantage of following this
recommendation is the ease of long-term maintenance and improved readability. The
disadvantage is that each class definition file must be included (that is, using include or its
variants). To address this issue, there is a mechanism built into the PHP language that will
autoload any class that has not already been specifically included.

Getting ready
The minimum requirement for PHP autoloading is to define a global __autoload() function.
This is a magic function called automatically by the PHP engine when a class is requested
but where said class has not been included. The name of the requested class will appear as
a parameter when __autoload() is invoked (assuming that you have defined it!). If you are
using PHP namespaces, the full namespaced name of the class will be passed. Because __
autoload() is a function, it must be in the global namespace; however, there are limitations
on its use. Accordingly, in this recipe, we will make use of the spl_autoload_register()
function, which gives us more flexibility.

How to do it…
1.	 The class we will cover in this recipe is Application\Autoload\Loader. In order

to take advantage of the relationship between PHP namespaces and autoloading,
we name the file Loader.php and place it in the /path/to/cookbook/files/
Application/Autoload folder.

2.	 The first method we will present simply loads a file. We use file_exists() to
check before running require_once(). The reason for this is that if the file is not
found, require_once() will generate a fatal error that cannot be caught using PHP
7's new error handling capabilities:
protected static function loadFile($file)
{
 if (file_exists($file)) {
 require_once $file;
 return TRUE;
 }
 return FALSE;
}

3.	 We can then test the return value of loadFile() in the calling program and loop
through a list of alternate directories before throwing an Exception if it's ultimately
unable to load the file.

Building a Foundation

10

You will notice that the methods and properties in this class are
static. This gives us greater flexibility when registering the autoloading
method, and also lets us treat the Loader class like a Singleton.

4.	 Next, we define the method that calls loadFile() and actually performs the logic
to locate the file based on the namespaced classname. This method derives a
filename by converting the PHP namespace separator \ into the directory separator
appropriate for this server and appending .php:
public static function autoLoad($class)
{
 $success = FALSE;
 $fn = str_replace('\\', DIRECTORY_SEPARATOR, $class)
 . '.php';
 foreach (self::$dirs as $start) {
 $file = $start . DIRECTORY_SEPARATOR . $fn;
 if (self::loadFile($file)) {
 $success = TRUE;
 break;
 }
 }
 if (!$success) {
 if (!self::loadFile(__DIR__
 . DIRECTORY_SEPARATOR . $fn)) {
 throw new \Exception(
 self::UNABLE_TO_LOAD . ' ' . $class);
 }
 }
 return $success;
}

5.	 Next, the method loops through an array of directories we call self::$dirs, using
each directory as a starting point for the derived filename. If not successful, as a last
resort, the method attempts to load the file from the current directory. If even that is
not successful, an Exception is thrown.

6.	 Next, we need a method that can add more directories to our list of directories to test.
Notice that if the value provided is an array, array_merge() is used. Otherwise, we
simply add the directory string to the self::$dirs array:
public static function addDirs($dirs)
{
 if (is_array($dirs)) {
 self::$dirs = array_merge(self::$dirs, $dirs);
 } else {

Chapter 1

11

 self::$dirs[] = $dirs;
 }
}

7.	 Then, we come to the most important part; we need to register our autoload()
method as a Standard PHP Library (SPL) autoloader. This is accomplished using
spl_autoload_register() with the init() method:
public static function init($dirs = array())
{
 if ($dirs) {
 self::addDirs($dirs);
 }
 if (self::$registered == 0) {
 spl_autoload_register(__CLASS__ . '::autoload');
 self::$registered++;
 }
}

8.	 At this point, we can define __construct(), which calls self::init($dirs).
This allows us to also create an instance of Loader if desired:

public function __construct($dirs = array())
{
 self::init($dirs);
}

How it works…
In order to use the autoloader class that we just defined, you will need to require Loader.
php. If your namespace files are located in a directory other than the current one, you should
also run Loader::init() and supply additional directory paths.

In order to make sure the autoloader works, we'll also need a test class. Here is a definition of
/path/to/cookbook/files/Application/Test/TestClass.php:

<?php
namespace Application\Test;
class TestClass
{
 public function getTest()
 {
 return __METHOD__;
 }
}

Building a Foundation

12

Now create a sample chap_01_autoload_test.php code file to test the autoloader:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Next, get an instance of a class that has not already been loaded:

$test = new Application\Test\TestClass();
echo $test->getTest();

Finally, try to get a fake class that does not exist. Note that this will throw an error:

$fake = new Application\Test\FakeClass();
echo $fake->getTest();

Hoovering a website
Very frequently, it is of interest to scan a website and extract information from specific tags.
This basic mechanism can be used to trawl the web in search of useful bits of information. At
other times you need to get a list of tags and the SRC attribute, or <A> tags and the
corresponding HREF attribute. The possibilities are endless.

How to do it…
1.	 First of all, we need to grab the contents of the target website. At first glance it seems

that we should make a cURL request, or simply use file_get_contents().
The problem with these approaches is that we will end up having to do a massive
amount of string manipulation, most likely having to make inordinate use of the
dreaded regular expression. In order to avoid all of this, we'll simply take advantage
of an already existing PHP 7 class DOMDocument. So we create a DOMDocument
instance, setting it to UTF-8. We don't care about whitespace, and use the handy
loadHTMLFile() method to load the contents of the website into the object:
public function getContent($url)
{
 if (!$this->content) {
 if (stripos($url, 'http') !== 0) {
 $url = 'http://' . $url;
 }
 $this->content = new DOMDocument('1.0', 'utf-8');
 $this->content->preserveWhiteSpace = FALSE;
 // @ used to suppress warnings generated from
 // improperly configured web pages
 @$this->content->loadHTMLFile($url);
 }

Chapter 1

13

 return $this->content;
}

Note that we precede the call to the loadHTMLFile() method with an @.
This is not done to obscure bad coding (!) as was often the case in PHP 5!
Rather, the @ suppresses notices generated when the parser encounters
poorly written HTML. Presumably, we could capture the notices and log
them, possibly giving our Hoover class a diagnostic capability as well.

2.	 Next, we need to extract the tags which are of interest. We use the
getElementsByTagName() method for this purpose. If we wish to extract
all tags, we can supply * as an argument:
public function getTags($url, $tag)
{
 $count = 0;
 $result = array();
 $elements = $this->getContent($url)
 ->getElementsByTagName($tag);
 foreach ($elements as $node) {
 $result[$count]['value'] = trim(
 preg_replace('/\s+/', ' ', $node->nodeValue));
 if ($node->hasAttributes()) {
 foreach ($node->attributes as $name => $attr)
 {
 $result[$count]['attributes'][$name] =
 $attr->value;
 }
 }
 $count++;
 }
 return $result;
}

3.	 It might also be of interest to extract certain attributes rather than tags. Accordingly,
we define another method for this purpose. In this case, we need to parse through all
tags and use getAttribute(). You'll notice that there is a parameter for the DNS
domain. We've added this in order to keep the scan within the same domain (if you're
building a web tree, for example):

public function getAttribute($url, $attr, $domain = NULL)
{
 $result = array();
 $elements = $this->getContent($url)
 ->getElementsByTagName('*');
 foreach ($elements as $node) {

Building a Foundation

14

 if ($node->hasAttribute($attr)) {
 $value = $node->getAttribute($attr);
 if ($domain) {
 if (stripos($value, $domain) !== FALSE) {
 $result[] = trim($value);
 }
 } else {
 $result[] = trim($value);
 }
 }
 }
 return $result;
}

How it works…
In order to use the new Hoover class, initialize the autoloader (described previously) and
create an instance of the Hoover class. You can then run the Hoover::getTags() method
to produce an array of tags from the URL you specify as an argument.

Here is a block of code from chap_01_vacuuming_website.php that uses the Hoover
class to scan the O'Reilly website for <A> tags:

<?php
// modify as needed
define('DEFAULT_URL', 'http://oreilly.com/');
define('DEFAULT_TAG', 'a');

require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

// get "vacuum" class
$vac = new Application\Web\Hoover();

// NOTE: the PHP 7 null coalesce operator is used
$url = strip_tags($_GET['url'] ?? DEFAULT_URL);
$tag = strip_tags($_GET['tag'] ?? DEFAULT_TAG);

echo 'Dump of Tags: ' . PHP_EOL;
var_dump($vac->getTags($url, $tag));

Chapter 1

15

The output will look something like this:

See also
For more information on DOM, see the PHP reference page at http://php.net/manual/
en/class.domdocument.php.

Building a deep web scanner
Sometimes you need to scan a website, but go one level deeper. For example, you want to
build a web tree diagram of a website. This can be accomplished by looking for all <A> tags
and following the HREF attributes to the next web page. Once you have acquired the child
pages, you can then continue scanning in order to complete the tree.

http://php.net/manual/en/class.domdocument.php
http://php.net/manual/en/class.domdocument.php

Building a Foundation

16

How to do it…
1.	 A core component of a deep web scanner is a basic Hoover class, as described

previously. The basic procedure presented in this recipe is to scan the target website
and hoover up all the HREF attributes. For this purpose, we define a Application\
Web\Deep class. We add a property that represents the DNS domain:
namespace Application\Web;
class Deep
{
 protected $domain;

2.	 Next, we define a method that will hoover the tags for each website represented in
the scan list. In order to prevent the scanner from trawling the entire World Wide
Web (WWW), we've limited the scan to the target domain. The reason why yield
from has been added is because we need to yield the entire array produced by
Hoover::getTags(). The yield from syntax allows us to treat the array as a
sub-generator:
public function scan($url, $tag)
{
 $vac = new Hoover();
 $scan = $vac->getAttribute($url, 'href',
 $this->getDomain($url));
 $result = array();
 foreach ($scan as $subSite) {
 yield from $vac->getTags($subSite, $tag);
 }
 return count($scan);
}

The use of yield from turns the scan() method into a PHP 7
delegating generator. Normally, you would be inclined to store the results
of the scan into an array. The problem, in this case, is that the amount
of information retrieved could potentially be massive. Thus, it's better to
immediately yield the results in order to conserve memory and to produce
immediate results. Otherwise, there would be a lengthy wait, which would
probably be followed by an out of memory error.

3.	 In order to keep within the same domain, we need a method that will return the
domain from the URL. We use the convenient parse_url() function for this
purpose:

public function getDomain($url)
{
 if (!$this->domain) {

Chapter 1

17

 $this->domain = parse_url($url, PHP_URL_HOST);
 }
 return $this->domain;
}

How it works…
First of all, go ahead and define the Application\Web\Deep class defined previously,
as well as the Application\Web\Hoover class defined in the previous recipe.

Next, define a block of code from chap_01_deep_scan_website.php that sets up
autoloading (as described earlier in this chapter):

<?php
// modify as needed
define('DEFAULT_URL', unlikelysource.com');
define('DEFAULT_TAG', 'img');

require __DIR__ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/../..');

Next, get an instance of our new class:

$deep = new Application\Web\Deep();

At this point, you can retrieve URL and tag information from URL parameters. The PHP 7 null
coalesce operator is useful for establishing fallback values:

$url = strip_tags($_GET['url'] ?? DEFAULT_URL);
$tag = strip_tags($_GET['tag'] ?? DEFAULT_TAG);

Some simple HTML will display results:

foreach ($deep->scan($url, $tag) as $item) {
 $src = $item['attributes']['src'] ?? NULL;
 if ($src && (stripos($src, 'png') || stripos($src, 'jpg'))) {
 printf('
', $src);
 }
}

See also
For more information on generators and yield from, please see the article at
http://php.net/manual/en/language.generators.syntax.php.

http://php.net/manual/en/language.generators.syntax.php

Building a Foundation

18

Creating a PHP 5 to PHP 7 code converter
For the most part, PHP 5.x code can run unchanged on PHP 7. There are a few changes,
however, that are classified as backwards incompatible. What this means is that if your PHP
5 code is written in a certain way, or uses functions that have been removed, your code will
break, and you'll have a nasty error on your hands.

Getting ready
The PHP 5 to PHP 7 Code Converter does two things:

ff Scans your code file and converts PHP 5 functionality that has been removed to its
equivalent in PHP 7

ff Adds comments with // WARNING where changes in language usage have occurred,
but where a re-write is not possible

Please note that after running the converter, your code is not guaranteed
to work in PHP 7. You will still have to review the // WARNING tags added.
At the least, this recipe will give you a good head start converting your PHP
5 code to work in PHP 7.

The core of this recipe is the new PHP 7 preg_replace_callback_array() function.
What this amazing function allows you to do is to present an array of regular expressions
as keys, with the value representing an independent callback. You can then pass the string
through a series of transformations. Not only that, the subject of the array of callbacks can
itself be an array.

How to do it…
1.	 In a new class Application\Parse\Convert, we begin with a scan() method,

which accepts a filename as an argument. It checks to see if the file exists. If so, it
calls the PHP file() function, which loads the file into an array, with each array
element representing one line:
public function scan($filename)
{
 if (!file_exists($filename)) {
 throw new Exception(
 self::EXCEPTION_FILE_NOT_EXISTS);
 }
 $contents = file($filename);
 echo 'Processing: ' . $filename . PHP_EOL;

 $result = preg_replace_callback_array([

Chapter 1

19

2.	 Next, we start passing a series of key/value pairs. The key is a regular expression,
which is processed against the string. Any matches are passed to the callback, which
is represented as the value part of the key/value pair. We check for opening and
closing tags that have been removed from PHP 7:
 // replace no-longer-supported opening tags
 '!^\<\%(\n|)!' =>
 function ($match) {
 return '<?php' . $match[1];
 },

 // replace no-longer-supported opening tags
 '!^\<\%=(\n|)!' =>
 function ($match) {
 return '<?php echo ' . $match[1];
 },

 // replace no-longer-supported closing tag
 '!\%\>!' =>
 function ($match) {
 return '?>';
 },

3.	 Next is a series of warnings when certain operations are detected and there is a
potential code-break between how they're handled in PHP 5 versus PHP 7. In all these
cases, the code is not re-written. Instead, an inline comment with the word WARNING
is added:
 // changes in how $$xxx interpretation is handled
 '!(.*?)\$\$!' =>
 function ($match) {
 return '// WARNING: variable interpolation
 . ' now occurs left-to-right' . PHP_EOL
 . '// see: http://php.net/manual/en/'
 . '// migration70.incompatible.php'
 . $match[0];
 },

 // changes in how the list() operator is handled
 '!(.*?)list(\s*?)?\(!' =>
 function ($match) {
 return '// WARNING: changes have been made '
 . 'in list() operator handling.'
 . 'See: http://php.net/manual/en/'
 . 'migration70.incompatible.php'
 . $match[0];

Building a Foundation

20

 },

 // instances of \u{
 '!(.*?)\\\u\{!' =>
 function ($match) {
 return '// WARNING: \\u{xxx} is now considered '
 . 'unicode escape syntax' . PHP_EOL
 . '// see: http://php.net/manual/en/'
 . 'migration70.new-features.php'
 . '#migration70.new-features.unicode-'
 . 'codepoint-escape-syntax' . PHP_EOL
 . $match[0];
 },

 // relying upon set_error_handler()
 '!(.*?)set_error_handler(\s*?)?.*\(!' =>
 function ($match) {
 return '// WARNING: might not '
 . 'catch all errors'
 . '// see: http://php.net/manual/en/'
 . '// language.errors.php7.php'
 . $match[0];
 },

 // session_set_save_handler(xxx)
 '!(.*?)session_set_save_handler(\s*?)?\((.*?)\)!' =>
 function ($match) {
 if (isset($match[3])) {
 return '// WARNING: a bug introduced in'
 . 'PHP 5.4 which '
 . 'affects the handler assigned by '
 . 'session_set_save_handler() and '
 . 'where ignore_user_abort() is TRUE
 . 'has been fixed in PHP 7.'
 . 'This could potentially break '
 . 'your code under '
 . 'certain circumstances.' . PHP_EOL
 . 'See: http://php.net/manual/en/'
 . 'migration70.incompatible.php'
 . $match[0];
 } else {
 return $match[0];
 }
 },

Chapter 1

21

4.	 Any attempts to use << or >> with a negative operator, or beyond 64, is wrapped in a
try { xxx } catch() { xxx } block, looking for an ArithmeticError to be
thrown:
 // wraps bit shift operations in try / catch
 '!^(.*?)(\d+\s*(\<\<|\>\>)\s*-?\d+)(.*?)$!' =>
 function ($match) {
 return '// WARNING: negative and '
 . 'out-of-range bitwise '
 . 'shift operations will now
 . 'throw an ArithmeticError' . PHP_EOL
 . 'See: http://php.net/manual/en/'
 . 'migration70.incompatible.php'
 . 'try {' . PHP_EOL
 . "\t" . $match[0] . PHP_EOL
 . '} catch (\\ArithmeticError $e) {'
 . "\t" . 'error_log("File:"
 . $e->getFile()
 . " Message:" . $e->getMessage());'
 . '}' . PHP_EOL;
 },

PHP 7 has changed how errors are handled. In some cases, errors are
moved into a similar classification as exceptions, and can be caught!
Both the Error and the Exception class implement the Throwable
interface. If you want to catch either an Error or an Exception, catch
Throwable.

5.	 Next, the converter rewrites any usage of call_user_method*(), which has
been removed in PHP 7. These are replaced with the equivalent using call_user_
func*():
 // replaces "call_user_method()" with
 // "call_user_func()"
 '!call_user_method\((.*?),(.*?)(,.*?)\)(\b|;)!' =>
 function ($match) {
 $params = $match[3] ?? '';
 return '// WARNING: call_user_method() has '
 . 'been removed from PHP 7' . PHP_EOL
 . 'call_user_func(['. trim($match[2]) . ','
 . trim($match[1]) . ']' . $params . ');';
 },

 // replaces "call_user_method_array()"
 // with "call_user_func_array()"
 '!call_user_method_array\((.*?),(.*?),(.*?)\)(\b|;)!' =>

Building a Foundation

22

 function ($match) {
 return '// WARNING: call_user_method_array()'
 . 'has been removed from PHP 7'
 . PHP_EOL
 . 'call_user_func_array(['
 . trim($match[2]) . ','
 . trim($match[1]) . '], '
 . $match[3] . ');';
 },

6.	 Finally, any attempt to use preg_replace() with the /e modifier is rewritten using
a preg_replace_callback():

 '!^(.*?)preg_replace.*?/e(.*?)$!' =>
 function ($match) {
 $last = strrchr($match[2], ',');
 $arg2 = substr($match[2], 2, -1 * (strlen($last)));
 $arg1 = substr($match[0],
 strlen($match[1]) + 12,
 -1 * (strlen($arg2) + strlen($last)));
 $arg1 = trim($arg1, '(');
 $arg1 = str_replace('/e', '/', $arg1);
 $arg3 = '// WARNING: preg_replace() "/e" modifier
 . 'has been removed from PHP 7'
 . PHP_EOL
 . $match[1]
 . 'preg_replace_callback('
 . $arg1
 . 'function ($m) { return '
 . str_replace('$1','$m', $match[1])
 . trim($arg2, '"\'') . '; }, '
 . trim($last, ',');
 return str_replace('$1', '$m', $arg3);
 },

 // end array
],

 // this is the target of the transformations
 $contents
);
 // return the result as a string
 return implode('', $result);
}

Chapter 1

23

How it works…
To use the converter, run the following code from the command line. You'll need to supply the
filename of the PHP 5 code to be scanned as an argument.

This block of code, chap_01_php5_to_php7_code_converter.php, run from the
command line, calls the converter:

<?php
// get filename to scan from command line
$filename = $argv[1] ?? '';

if (!$filename) {
 echo 'No filename provided' . PHP_EOL;
 echo 'Usage: ' . PHP_EOL;
 echo __FILE__ . ' <filename>' . PHP_EOL;
 exit;
}

// setup class autoloading
require __DIR__ . '/../Application/Autoload/Loader.php';

// add current directory to the path
Application\Autoload\Loader::init(__DIR__ . '/..');

// get "deep scan" class
$convert = new Application\Parse\Convert();
echo $convert->scan($filename);
echo PHP_EOL;

See also
For more information on backwards incompatible changes, please refer to http://php.
net/manual/en/migration70.incompatible.php.

http://php.net/manual/en/migration70.incompatible.php
http://php.net/manual/en/migration70.incompatible.php

25

Using PHP 7 High
Performance Features

In this chapter we will discuss and understand the syntax differences between PHP 5 and
PHP 7, featuring the following recipes:

ff Understanding the abstract syntax tree

ff Understanding differences in parsing

ff Understanding differences in foreach() handling

ff Improving performance using PHP 7 enhancements

ff Iterating through a massive file

ff Uploading a spreadsheet into a database

ff Recursive directory iterator

Introduction
In this chapter we will move directly into PHP 7, presenting recipes that take advantage of
new high performance features. First, however, we will present a series of smaller recipes
that serve to illustrate the differences in how PHP 7 handles parameter parsing, syntax, a
foreach() loop, and other enhancements. Before we go into depth in this chapter, let's
discuss some basic differences between PHP 5 and PHP 7.

PHP 7 introduced a new layer referred to as the Abstract Syntax Tree (AST), which effectively
decouples the parsing process from the pseudo-compile process. Although the new layer has
little or no impact on performance, it gives the language a new uniformity of syntax, which was
not possible previously.

2

Using PHP 7 High Performance Features

26

Another benefit of AST is the process of dereferencing. Dereferencing, simply put, refers to
the ability to immediately acquire a property from, or run a method of, an object, immediately
access an array element, and immediately execute a callback. In PHP 5 such support was
inconsistent and incomplete. To execute a callback, for example, often you would first need
to assign the callback or anonymous function to a variable, and then execute it. In PHP 7 you
can execute it immediately.

Understanding the abstract syntax tree
As a developer, it might be of interest for you to be free from certain syntax restrictions
imposed in PHP 5 and earlier. Aside from the uniformity of the syntax mentioned previously,
where you'll see the most improvement in syntax is the ability to call any return value, which
is callable by simply appending an extra set of parentheses. Also, you'll be able to directly
access any array element when the return value is an array.

How to do it…
1.	 Any function or method that returns a callback can be immediately executed by

simply appending parentheses () (with or without parameters). An element can
be immediately dereferenced from any function or method that returns an array by
simply indicating the element using square brackets [];. In the short (but trivial)
example shown next, the function test() returns an array. The array contains six
anonymous functions. $a has a value of $t. $$a is interpreted as $test:
function test()
{
 return [
 1 => function () { return [
 1 => function ($a) { return 'Level 1/1:' . ++$a; },
 2 => function ($a) { return 'Level 1/2:' . ++$a; },
];},
 2 => function () { return [
 1 => function ($a) { return 'Level 2/1:' . ++$a; },
 2 => function ($a) { return 'Level 2/2:' . ++$a; },
];}
];
}

$a = 't';
$t = 'test';
echo $$a()[1]()[2](100);

Chapter 2

27

2.	 AST allows us to issue the echo $$a()[1]()[2](100) command. This is parsed
left-to-right, which executes as follows:

�� $$a() interprets as test(), which returns an array

�� [1] dereferences array element 1, which returns a callback

�� () executes this callback, which returns an array of two elements

�� [2] dereferences array element 2, which returns a callback

�� (100) executes this callback, supplying a value of 100, which returns
Level 1/2:101

Such a statement is not possible in PHP 5: a parse error
would be returned.

3.	 The following is a more substantive example that takes advantage of AST syntax to
define a data filtering and validating class. First of all, we define the Application\
Web\Securityclass. In the constructor, we build and define two arrays. The first
array consists of filter callbacks. The second array has validation callbacks:
public function __construct()
 {
 $this->filter = [
 'striptags' => function ($a) { return strip_tags($a); },
 'digits' => function ($a) { return preg_replace(
 '/[^0-9]/', '', $a); },
 'alpha' => function ($a) { return preg_replace(
 '/[^A-Z]/i', '', $a); }
];
 $this->validate = [
 'alnum' => function ($a) { return ctype_alnum($a); },
 'digits' => function ($a) { return ctype_digit($a); },
 'alpha' => function ($a) { return ctype_alpha($a); }
];
 }

4.	 We want to be able to call this functionality in a developer-friendly manner. Thus,
if we want to filter digits, then it would be ideal to run a command such as this:
$security->filterDigits($item));

5.	 To accomplish this we define the magic method __call(), which gives us access to
non-existent methods:

public function __call($method, $params)
{

Using PHP 7 High Performance Features

28

 preg_match('/^(filter|validate)(.*?)$/i', $method, $matches);
 $prefix = $matches[1] ?? '';
 $function = strtolower($matches[2] ?? '');
 if ($prefix && $function) {
 return $this->$prefix[$function]($params[0]);
 }
 return $value;
}

We use preg_match() to match the $method param against filter or validate. The
second sub-match will then be converted into an array key in either $this->filter or
$this->validate. If both sub-patterns produce a sub-match, we assign the first sub-match
to $prefix, and the second sub-match $function. These end up as variable parameters
when executing the appropriate callback.

Don't go too crazy with this stuff!
As you revel in your new found freedom of expression, made possible by
AST, be sure to keep in mind that the code you end up writing could, in
the long run, be extremely cryptic. This will ultimately cause long-term
maintenance problems.

How it works…
First of all, we create a sample file, chap_02_web_filtering_ast_example.php, to
take advantage of the autoloading class defined in Chapter 1, Building the Foundation, to
obtain an instance of Application\Web\Security:

require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
$security = new Application\Web\Security();

Next, we define a block of test data:

$data = [
 'LotsofTags',
 12345,
 'This is a string',
 'String with number 12345',
];

Finally, we call each filter and validator for each item of test data:

foreach ($data as $item) {
 echo 'ORIGINAL: ' . $item . PHP_EOL;
 echo 'FILTERING' . PHP_EOL;

Chapter 2

29

 printf('%12s : %s' . PHP_EOL,'Strip Tags',
 $security->filterStripTags($item));
 printf('%12s : %s' . PHP_EOL, 'Digits',
 $security->filterDigits($item));
 printf('%12s : %s' . PHP_EOL, 'Alpha',
 $security->filterAlpha($item));

 echo 'VALIDATORS' . PHP_EOL;
 printf('%12s : %s' . PHP_EOL, 'Alnum',
 ($security->validateAlnum($item)) ? 'T' : 'F');
 printf('%12s : %s' . PHP_EOL, 'Digits',
 ($security->validateDigits($item)) ? 'T' : 'F');
 printf('%12s : %s' . PHP_EOL, 'Alpha',
 ($security->validateAlpha($item)) ? 'T' : 'F');
}

Here is the output of some input strings:

Using PHP 7 High Performance Features

30

See also
For more information on AST, please consult the RFC that addresses the Abstract Syntax
Tree, which can be viewed at https://wiki.php.net/rfc/abstract_syntax_tree.

Understanding differences in parsing
In PHP 5, expressions on the right side of an assignment operation were parsed right-to-left.
In PHP 7, parsing is consistently left-to-right.

How to do it…
1.	 A variable-variable is a way of indirectly referencing a value. In the following example,

first $$foo is interpreted as ${$bar}. The final return value is thus the value of
$bar instead of the direct value of $foo (which would be bar):
$foo = 'bar';
$bar = 'baz';
echo $$foo; // returns 'baz';

2.	 In the next example we have a variable-variable $$foo, which references a multi-
dimensional array with a bar key and a baz sub-key:
$foo = 'bar';
$bar = ['bar' => ['baz' => 'bat']];
// returns 'bat'
echo $$foo['bar']['baz'];

3.	 In PHP 5, parsing occurs right-to-left, which means the PHP engine would be looking
for an $foo array, with a bar key and a baz. sub-key The return value of the
element would then be interpreted to obtain the final value ${$foo['bar']
['baz']}.

4.	 In PHP 7, however, parsing is consistently left-to-right, which means that $foo is
interpreted first ($$foo)['bar']['baz'].

5.	 In the next example you can see that $foo->$bar['bada'] is interpreted quite
differently in PHP 5, compared with PHP 7. In the following example, PHP 5 would
first interpret $bar['bada'], and reference this return value against a $foo
object instance. In PHP 7, on the other hand, parsing is consistently left-to-
right, which means that $foo->$bar is interpreted first, and expects an array with
a bada element. You will also note, incidentally, that this example uses the PHP 7
anonymous class feature:
// PHP 5: $foo->{$bar['bada']}
// PHP 7: ($foo->$bar)['bada']
$bar = 'baz';
// $foo = new class

https://wiki.php.net/rfc/abstract_syntax_tree

Chapter 2

31

{
 public $baz = ['bada' => 'boom'];
};
// returns 'boom'
echo $foo->$bar['bada'];

6.	 The last example is the same as the one immediately above, except that the return
value is expected to be a callback, which is then immediately executed as follows:

// PHP 5: $foo->{$bar['bada']}()
// PHP 7: ($foo->$bar)['bada']()
$bar = 'baz';
// NOTE: this example uses the new PHP 7 anonymous class feature
$foo = new class
{
 public function __construct()
 {
 $this->baz = ['bada' => function () { return 'boom'; }];
 }
};
// returns 'boom'
echo $foo->$bar['bada']();

How it works…
Place the code examples illustrated in 1 and 2 into a single PHP file that you can call
chap_02_understanding_diffs_in_parsing.php. Execute the script first using
PHP 5, and you will notice that a series of errors will result, as follows:

Using PHP 7 High Performance Features

32

The reason for the errors is that PHP 5 parses inconsistently, and arrives at the wrong
conclusion regarding the state of the variable variables requested (as previously mentioned).
Now you can go ahead and add the remaining examples, as shown in steps 5 and 6. If you
then run this script in PHP 7, the results described will appear, as shown here:

See also
For more information on parsing, please consult the RFC, which addresses Uniform Variable
Syntax, and can be viewed at https://wiki.php.net/rfc/uniform_variable_
syntax.

Understanding differences in foreach()
handling

In certain relatively obscure circumstances, the behavior of code inside a foreach()
loop will vary between PHP 5 and PHP 7. First of all, there have been massive internal
improvements, which means that in terms of sheer speed, processing inside the foreach()
loop will be much faster running under PHP 7, compared with PHP 5. Problems that are
noticed in PHP 5 include the use of current(), and unset() on the array inside the
foreach() loop. Other problems have to do with passing values by reference while
manipulating the array itself.

How to do it…
1.	 Consider the following block of code:

$a = [1, 2, 3];
foreach ($a as $v) {
 printf("%2d\n", $v);
 unset($a[1]);
}

https://wiki.php.net/rfc/uniform_variable_syntax
https://wiki.php.net/rfc/uniform_variable_syntax

Chapter 2

33

2.	 In both PHP 5 and 7, the output would appear as follows:
 1
 2
 3

3.	 If you add an assignment before the loop, however, the behavior changes:
$a = [1, 2, 3];
$b = &$a;
foreach ($a as $v) {
 printf("%2d\n", $v);
 unset($a[1]);
}

4.	 Compare the output of PHP 5 and 7:

PHP 5 PHP 7
 1

 3

 1

 2

 3

5.	 Working with functions that reference the internal array pointer also caused
inconsistent behavior in PHP 5. Take the following code example:
$a = [1,2,3];
foreach($a as &$v) {
 printf("%2d - %2d\n", $v, current($a));
}

Every array has an internal pointer to its current element starting
from 1, current() returns the current element in an array.

6.	 Notice that the output running in PHP 7 is normalized and consistent:

PHP 5 PHP 7
1 - 2

2 - 3

3 - 0

1 - 1

2 - 1

3 - 1

Using PHP 7 High Performance Features

34

7.	 Adding a new element inside the foreach() loop, once the array iteration by
reference is complete, is also problematic in PHP 5. This behavior has been made
consistent in PHP 7. The following code example demonstrates this:
$a = [1];
foreach($a as &$v) {
 printf("%2d -\n", $v);
 $a[1]=2;
}

8.	 We will observe the following output:

PHP 5 PHP 7
1 - 1 -

2 -

9.	 Another example of bad PHP 5 behavior addressed in PHP 7, during array iteration
by reference, is the use of functions that modify the array, such as array_push(),
array_pop(), array_shift(), and array_unshift().

Have a look at this example:

$a=[1,2,3,4];
foreach($a as &$v) {
 echo "$v\n";
 array_pop($a);
}

10.	 You will observe the following output:

PHP 5 PHP 7
1

2

1

1

1

2

11.	 Finally, we have a case where you are iterating through an array by reference, with a
nested foreach() loop, which itself iterates on the same array by reference. In PHP
5 this construct simply did not work. In PHP 7 this has been fixed. The following block
of code demonstrates this behavior:
$a = [0, 1, 2, 3];
foreach ($a as &$x) {
 foreach ($a as &$y) {
 echo "$x - $y\n";
 if ($x == 0 && $y == 1) {
 unset($a[1]);

Chapter 2

35

 unset($a[2]);
 }
 }
}

12.	 And here is the output:

PHP 5 PHP 7
0 - 0

0 - 1

0 - 3

0 - 0

0 - 1

0 - 3

3 - 0

3 -3

How it works…
Add these code examples to a single PHP file, chap_02_foreach.php. Run the script under
PHP 5 from the command line. The expected output is as follows:

Using PHP 7 High Performance Features

36

Run the same script under PHP 7 and notice the difference:

See also
For more information, consult the RFC addressing this issue, which was accepted. A write-up
on this RFC can be found at: https://wiki.php.net/rfc/php7_foreach.

Improving performance using PHP 7
enhancements

One trend that developers are taking advantage of is the use of anonymous functions. One
classic problem, when dealing with anonymous functions, is to write them in such a way that
any object can be bound to $this and the function will still work. The approach used in
PHP 5 code is to use bindTo(). In PHP 7, a new method, call(), was added, which offers
similar functionality, but vastly improved performance.

How to do it…
To take advantage of call(), execute an anonymous function in a lengthy loop. In this
example, we will demonstrate an anonymous function, that scans through a log file, identifying
IP addresses sorted by how frequently they appear:

https://wiki.php.net/rfc/php7_foreach

Chapter 2

37

1.	 First, we define a Application\Web\Access class. In the constructor,
we accept a filename as an argument. The log file is opened as an SplFileObject
and assigned to $this->log:
Namespace Application\Web;

use Exception;
use SplFileObject;
class Access
{
 const ERROR_UNABLE = 'ERROR: unable to open file';
 protected $log;
 public $frequency = array();
 public function __construct($filename)
 {
 if (!file_exists($filename)) {
 $message = __METHOD__ . ' : ' . self::ERROR_UNABLE . PHP_EOL;
 $message .= strip_tags($filename) . PHP_EOL;
 throw new Exception($message);
 }
 $this->log = new SplFileObject($filename, 'r');
 }

2.	 Next, we define a generator that iterates through the file, line by line:
public function fileIteratorByLine()
{
 $count = 0;
 while (!$this->log->eof()) {
 yield $this->log->fgets();
 $count++;
 }
 return $count;
}

3.	 Finally, we define a method that looks for, and extracts as a sub-match, an IP
address:

public function getIp($line)
{
 preg_match('/(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})/',
 $line, $match);
 return $match[1] ?? '';
 }
}

Using PHP 7 High Performance Features

38

How it works…
First of all, we define a calling program, chap_02_performance_using_php7_
enchancement_call.php, that takes advantage of the autoloading class defined in
Chapter 1 , Building a Foundation, to obtain an instance of Application\Web\Access:

define('LOG_FILES', '/var/log/apache2/*access*.log');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Next we define the anonymous function, which processes one line in the log file. If an IP
address is detected, it becomes a key in the $frequency array, and the current value for
this key is incremented:

// define functions
$freq = function ($line) {
 $ip = $this->getIp($line);
 if ($ip) {
 echo '.';
 $this->frequency[$ip] =
 (isset($this->frequency[$ip])) ? $this->frequency[$ip] + 1 : 1;
 }
};

We then loop through the iteration of lines in each log file found, processing IP addresses:

foreach (glob(LOG_FILES) as $filename) {
 echo PHP_EOL . $filename . PHP_EOL;
 // access class
 $access = new Application\Web\Access($filename);
 foreach ($access->fileIteratorByLine() as $line) {
 $freq->call($access, $line);
 }
}

Chapter 2

39

You can actually do the same thing in PHP 5. Two lines of code are
required, however:

$func = $freq->bindTo($access);

$func($line);

Performance is 20% to 50% slower than using call() in PHP 7.

Finally, we reverse-sort the array, but maintain the keys. The output is produced in a simple
foreach() loop:

arsort($access->frequency);
foreach ($access->frequency as $key => $value) {
 printf('%16s : %6d' . PHP_EOL, $key, $value);
}

The output will vary depending on which access.log you process. Here is a sample:

Using PHP 7 High Performance Features

40

There's more…
Many of the PHP 7 performance improvements have nothing to do with new features and
functions. Rather, they take the form of internal improvements, which are invisible until you
start running your programs. Here is a short list of improvements that fall into this category:

Feature More info: Notes
Fast
parameter
parsing

https://wiki.php.net/rfc/fast_zpp In PHP 5, parameters
provided to functions have
to be parsed for every
single function call. The
parameters were passed
in as a string, and parsed
in a manner similar to
the scanf() function.
In PHP 7 this process
has been optimized
and made much more
efficient, resulting in a
significant performance
improvement. The
improvement is difficult to
measure, but seems to be
in the region of 6%.

PHP NG https://wiki.php.net/rfc/phpng The PHP NG (Next
Generation) initiative
represents a rewrite
of most of the PHP
language. It retains
existing functionality, but
involves any and all time-
savings and efficiency
measures imaginable.
Data structures have been
compacted, and memory
is used more efficiently.
Just one change, which
affects array handling, for
example, has resulted in
a significant performance
increase, while at the
same time greatly
reducing memory usage.

https://wiki.php.net/rfc/fast_zpp
https://wiki.php.net/rfc/phpng

Chapter 2

41

Feature More info: Notes
Removing
dead
weight

https://wiki.php.net/rfc/removal_of_
dead_sapis_and_exts

There were approximately
two dozen extensions
that fell into one of these
categories: deprecated,
no longer maintained,
unmaintained
dependencies, or not
ported to PHP 7. A vote
by the group of core
developers determined
to remove about 2/3 or
the extensions on the
"short list". This results
in reduced overhead
and faster overall future
development of the PHP
language.

Iterating through a massive file
Functions such as file_get_contents() and file() are quick and easy to use however,
owing to memory limitations, they quickly cause problems when dealing with massive files.
The default setting for the php.ini memory_limit setting is 128 megabytes. Accordingly,
any file larger than this will not be loaded.

Another consideration when parsing through massive files is how quickly does your function
or class method produce output? When producing user output, for example, although it might
at first glance seem better to accumulate output in an array. You would then output it all at
once for improved efficiency. Unfortunately, this might have an adverse impact on the user
experience. It might be better to create a generator, and use the yield keyword to produce
immediate results.

How to do it…
As mentioned before, the file* functions (that is, file_get_contents()), are not
suitable for large files. The simple reason is that these functions, at one point, have the entire
contents of the file represented in memory. Accordingly, the focus of this recipe will be on the
f* functions (that is, fopen()).

https://wiki.php.net/rfc/removal_of_dead_sapis_and_exts
https://wiki.php.net/rfc/removal_of_dead_sapis_and_exts

Using PHP 7 High Performance Features

42

In a slight twist, however, instead of using the f* functions directly, instead we will use the
SplFileObject class, which is included in the SPL (Standard PHP Library):

1.	 First, we define a Application\Iterator\LargeFile class with the appropriate
properties and constants:
namespace Application\Iterator;

use Exception;
use InvalidArgumentException;
use SplFileObject;
use NoRewindIterator;

class LargeFile
{
 const ERROR_UNABLE = 'ERROR: Unable to open file';
 const ERROR_TYPE = 'ERROR: Type must be "ByLength",
 "ByLine" or "Csv"';
 protected $file;
 protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

2.	 We then define a __construct() method that accepts a filename as an argument
and populates the $file property with an SplFileObject instance. This is also a
good place to throw an exception if the file does not exist:
public function __construct($filename, $mode = 'r')
{
 if (!file_exists($filename)) {
 $message = __METHOD__ . ' : ' . self::ERROR_UNABLE . PHP_EOL;
 $message .= strip_tags($filename) . PHP_EOL;
 throw new Exception($message);
 }
 $this->file = new SplFileObject($filename, $mode);
}

3.	 Next we define a method fileIteratorByLine()method which uses fgets()
to read one line of the file at a time. It's not a bad idea to create a complimentary
fileIteratorByLength()method that does the same thing but uses fread()
instead. The method that uses fgets() would be suitable for text files that include
linefeeds. The other method could be used if parsing a large binary file:
protected function fileIteratorByLine()
{
 $count = 0;
 while (!$this->file->eof()) {
 yield $this->file->fgets();
 $count++;

Chapter 2

43

 }
 return $count;
}

protected function fileIteratorByLength($numBytes = 1024)
{
 $count = 0;
 while (!$this->file->eof()) {
 yield $this->file->fread($numBytes);
 $count++;
 }
 return $count;
}

4.	 Finally, we define a getIterator()method that returns a NoRewindIterator()
instance. This method accepts as arguments either ByLine or ByLength,
which refer to the two methods defined in the previous step. This method also
needs to accept $numBytes in case ByLength is called. The reason we need a
NoRewindIterator() instance is to enforce the fact that we're reading through the
file only in one direction in this example:

public function getIterator($type = 'ByLine', $numBytes = NULL)
{
 if(!in_array($type, $this->allowedTypes)) {
 $message = __METHOD__ . ' : ' . self::ERROR_TYPE . PHP_EOL;
 throw new InvalidArgumentException($message);
 }
 $iterator = 'fileIterator' . $type;
 return new NoRewindIterator($this->$iterator($numBytes));
}

How it works…
First of all, we take advantage of the autoloading class defined in Chapter 1, Building a
Foundation, to obtain an instance of Application\Iterator\LargeFile in a calling
program, chap_02_iterating_through_a_massive_file.php:

define('MASSIVE_FILE', '/../data/files/war_and_peace.txt');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Using PHP 7 High Performance Features

44

Next, inside a try {...} catch () {...} block, we get an instance of a ByLine iterator:

try {
 $largeFile = new Application\Iterator\LargeFile(__DIR__ . MASSIVE_
FILE);
 $iterator = $largeFile->getIterator('ByLine');

We then provide an example of something useful to do, in this case, defining an average of
words per line:

$words = 0;
foreach ($iterator as $line) {
 echo $line;
 $words += str_word_count($line);
}
echo str_repeat('-', 52) . PHP_EOL;
printf("%-40s : %8d\n", 'Total Words', $words);
printf("%-40s : %8d\n", 'Average Words Per Line',
($words / $iterator->getReturn()));
echo str_repeat('-', 52) . PHP_EOL;

We then end the catch block:

} catch (Throwable $e) {
 echo $e->getMessage();
}

The expected output (too large to show here!) shows us that there are 566,095 words in the
project Gutenberg version of War and Peace. Also, we find the average number of words per
line is eight.

Uploading a spreadsheet into a database
Although PHP does not have any direct capability to read a specific spreadsheet format (that
is, XLSX, ODS, and so on), it does have the ability to read (CSV Comma Separated Values)
files. Accordingly, in order to process customer spreadsheets, you will need to either ask them
to furnish their files in CSV format, or you will need to perform the conversion yourself.

Getting ready…
When uploading a spreadsheet (that is, a CSV file) into a database, there are three major
considerations:

ff Iterating through a (potentially) massive file

ff Extracting each spreadsheet row into a PHP array

ff Inserting the PHP array into the database

Chapter 2

45

Massive file iteration will be handled using the preceding recipe. We will use the fgetcsv()
function to convert a CSV row into a PHP array. Finally, we will use the (PDO PHP Data
Objects) class to make a database connection and perform the insert.

How to do it…
1.	 First, we define a Application\Database\Connection class that creates a PDO

instance based on a set of parameters supplied to the constructor:
<?php
 namespace Application\Database;

 use Exception;
 use PDO;

 class Connection
 {
 const ERROR_UNABLE = 'ERROR: Unable to create database
 connection';
 public $pdo;

 public function __construct(array $config)
 {
 if (!isset($config['driver'])) {
 $message = __METHOD__ . ' : ' . self::ERROR_UNABLE
 . PHP_EOL;
 throw new Exception($message);
 }
 $dsn = $config['driver']
 . ':host=' . $config['host']
 . ';dbname=' . $config['dbname'];
 try {
 $this->pdo = new PDO($dsn,
 $config['user'],
 $config['password'],
 [PDO::ATTR_ERRMODE => $config['errmode']]);
 } catch (PDOException $e) {
 error_log($e->getMessage());
 }
 }

}

Using PHP 7 High Performance Features

46

2.	 We then incorporate an instance of Application\Iterator\LargeFile. We add
a new method to this class that is designed to iterate through CSV files:
protected function fileIteratorCsv()
{
 $count = 0;
 while (!$this->file->eof()) {
 yield $this->file->fgetcsv();
 $count++;
 }
 return $count;
}

3.	 We also need to add Csv to the list of allowed iterator methods:

 const ERROR_UNABLE = 'ERROR: Unable to open file';
 const ERROR_TYPE = 'ERROR: Type must be "ByLength",
 "ByLine" or "Csv"';

 protected $file;
 protected $allowedTypes = ['ByLine', 'ByLength', 'Csv'];

How it works…
First we define a config file,/path/to/source/config/db.config.php, that contains
database connection parameters:

<?php
return [
 'driver' => 'mysql',
 'host' => 'localhost',
 'dbname' => 'php7cookbook',
 'user' => 'cook',
 'password' => 'book',
 'errmode' => PDO::ERRMODE_EXCEPTION,
];

Next, we take advantage of the autoloading class defined in Chapter 1, Building a Foundation,
to obtain an instance of Application\Database\Connection and Application\
Iterator\LargeFile, defining a calling program, chap_02_uploading_csv_to_
database.php:

define('DB_CONFIG_FILE', '/../data/config/db.config.php');
define('CSV_FILE', '/../data/files/prospects.csv');
require __DIR__ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Chapter 2

47

After that, we set up a try {...} catch () {...} block, which catches Throwable.
This allows us to catch both exceptions and errors:

try {
 // code goes here
} catch (Throwable $e) {
 echo $e->getMessage();
}

Inside the try {...} catch () {...} block we get an instance of the connection and
large file iterator classes:

$connection = new Application\Database\Connection(
include __DIR__ . DB_CONFIG_FILE);
$iterator = (new Application\Iterator\LargeFile(__DIR__ . CSV_FILE))
->getIterator('Csv');

We then take advantage of the PDO prepare/execute functionality. The SQL for the prepared
statement uses ? to represent values that are supplied in a loop:

$sql = 'INSERT INTO `prospects` '
 . '(`id`,`first_name`,`last_name`,`address`,`city`,`state_
province`,'
 . '`postal_code`,`phone`,`country`,`email`,`status`,`budget`,
 `last_updated`) '
 . ' VALUES (?,?,?,?,?,?,?,?,?,?,?,?,?)';
$statement = $connection->pdo->prepare($sql);

We then use foreach() to loop through the file iterator. Each yield statement produces
an array of values that represents a row in the database. We can then use these values with
PDOStatement::execute() to execute the prepared statement, inserting the row of values
into the database:

foreach ($iterator as $row) {
 echo implode(',', $row) . PHP_EOL;
 $statement->execute($row);
}

You can then examine the database to verify that the data was successfully inserted.

Recursive directory iterator
Getting a list of files in a directory is extremely easy. Traditionally, developers have used the
glob() function for this purpose. To recursively get a list of all files and directories from
a specific point in a directory tree is more problematic. This recipe takes advantage of an
(SPL Standard PHP Library) class RecursiveDirectoryIterator, which will serve this
purpose admirably.

Using PHP 7 High Performance Features

48

What this class does is to parse the directory tree, finding the first child, then it follows the
branches, until there are no more children, and then it stops! Unfortunately this is not what
we want. Somehow we need to get the RecursiveDirectoryIterator to continue
parsing every tree and branch, from a given starting point, until there are no more files or
directories. It so happens there is a marvelous class, RecursiveIteratorIterator,
that does exactly that. By wrapping RecursiveDirectoryIterator inside
RecursiveIteratorIterator, we accomplish a complete traversal of any directory tree.

Warning!
Be very careful where you start the filesystem traversal. If you start at
the root directory, you could end up crashing your server as the recursion
process will not stop until all files and directories have been located!

How to do it…
1.	 First, we define a Application\Iterator\Directory class that defines the

appropriate properties and constants and uses external classes:
namespace Application\Iterator;

use Exception;
use RecursiveDirectoryIterator;
use RecursiveIteratorIterator;
use RecursiveRegexIterator;
use RegexIterator;

class Directory
{

 const ERROR_UNABLE = 'ERROR: Unable to read directory';

 protected $path;
 protected $rdi;
 // recursive directory iterator

2.	 The constructor creates a RecursiveDirectoryIterator instance inside
RecursiveIteratorIterator based on a directory path:
public function __construct($path)
{
 try {
 $this->rdi = new RecursiveIteratorIterator(
 new RecursiveDirectoryIterator($path),

Chapter 2

49

 RecursiveIteratorIterator::SELF_FIRST);
 } catch (\Throwable $e) {
 $message = __METHOD__ . ' : ' . self::ERROR_UNABLE . PHP_EOL;
 $message .= strip_tags($path) . PHP_EOL;
 echo $message;
 exit;
 }
}

3.	 Next, we decide what to do with the iteration. One possibility is to mimic the output of
the Linux ls -l -R command. Notice that we use the yield keyword, effectively
making this method into a Generator, which can then be called from the outside.
Each object produced by the directory iteration is an SPL FileInfo object, which
can give us useful information on the file. Here is how this method might look:
public function ls($pattern = NULL)
{
 $outerIterator = ($pattern)
 ? $this->regex($this->rdi, $pattern)
 : $this->rdi;
 foreach($outerIterator as $obj){
 if ($obj->isDir()) {
 if ($obj->getFileName() == '..') {
 continue;
 }
 $line = $obj->getPath() . PHP_EOL;
 } else {
 $line = sprintf('%4s %1d %4s %4s %10d %12s %-40s' . PHP_EOL,
 substr(sprintf('%o', $obj->getPerms()), -4),
 ($obj->getType() == 'file') ? 1 : 2,
 $obj->getOwner(),
 $obj->getGroup(),
 $obj->getSize(),
 date('M d Y H:i', $obj->getATime()),
 $obj->getFileName());
 }
 yield $line;
 }
}

Using PHP 7 High Performance Features

50

4.	 You may have noticed that the method call includes a file pattern. We need a way
of filtering the recursion to only include files that match. There is another iterator
available from the SPL that perfectly suits this need: the RegexIterator class:
protected function regex($iterator, $pattern)
{
 $pattern = '!^.' . str_replace('.', '\\.', $pattern) . '$!';
 return new RegexIterator($iterator, $pattern);
}

5.	 Finally, here is another method, but this time we will mimic the dir /s command:

public function dir($pattern = NULL)
{
 $outerIterator = ($pattern)
 ? $this->regex($this->rdi, $pattern)
 : $this->rdi;
 foreach($outerIterator as $name => $obj){
 yield $name . PHP_EOL;
 }
 }
}

How it works…
First of all, we take advantage of the autoloading class defined in Chapter 1, Building a
Foundation, to obtain an instance of Application\Iterator\Directory, defining a
calling program, chap_02_recursive_directory_iterator.php:

define('EXAMPLE_PATH', realpath(__DIR__ . '/../'));
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
$directory = new Application\Iterator\Directory(EXAMPLE_PATH);

Then, in a try {...} catch () {...} block, we make a call to our two methods, using
an example directory path:

try {
 echo 'Mimics "ls -l -R" ' . PHP_EOL;
 foreach ($directory->ls('*.php') as $info) {
 echo $info;
 }

 echo 'Mimics "dir /s" ' . PHP_EOL;
 foreach ($directory->dir('*.php') as $info) {
 echo $info;

Chapter 2

51

 }

} catch (Throwable $e) {
 echo $e->getMessage();
}

The output for ls() will look something like this:

The output for dir() will appear as follows:

53

Working with
PHP Functional

Programming

In this chapter we will cover the following topics:

ff Developing functions

ff Hinting at data types

ff Using return value data typing

ff Using iterators

ff Writing your own iterator using generators

Introduction
In this chapter we will consider recipes that take advantage of PHP's functional programming
capabilities. Functional, or procedural, programming is the traditional way PHP code was written
prior to the introduction of the first implementation of object-oriented programming (OOP) in
PHP version 4. Functional programming is where program logic is encapsulated into a series
of discreet functions, which are generally stored in a separate PHP file. This file can then be
included in any future scripts, allowing the functions that are defined to be called at will.

3

Working with PHP Functional Programming

54

Developing functions
The most difficult aspect is deciding how to break up programming logic into functions. The
mechanics of developing a function in PHP, on the other hand, are quite easy. Just use the
function keyword, give it a name, and follow it with parentheses.

How to do it…
1.	 The code itself goes inside curly braces as follows:

function someName ($parameter)
{
 $result = 'INIT';
 // one or more statements which do something
 // to affect $result
 $result .= ' and also ' . $parameter;
 return $result;
}

2.	 You can define one or more parameters. To make one of them optional, simply assign
a default value. If you are not sure what default value to assign, use NULL:
function someOtherName ($requiredParam, $optionalParam = NULL)
 {
 $result = 0;
 $result += $requiredParam;
 $result += $optionalParam ?? 0;
 return $result;
 }

You cannot redefine functions. The only exception is when duplicate functions
are defined in separate namespaces. This definition would generate an error:

function someTest()
{
 return 'TEST';
}
function someTest($a)
{
 return 'TEST:' . $a;
}

Chapter 3

55

3.	 If you don't know how many parameters will be supplied to your function, or if you
want to allow for an infinite number of parameters, use ... followed by a variable
name. All parameters supplied will appear as an array in the variable:
function someInfinite(...$params)
{
 // any params passed go into an array $params
 return var_export($params, TRUE);
}

4.	 A function can call itself. This is referred to as recursion. The following function
performs a recursive directory scan:
function someDirScan($dir)
{
 // uses "static" to retain value of $list
 static $list = array();
 // get a list of files and directories for this path
 $list = glob($dir . DIRECTORY_SEPARATOR . '*');
 // loop through
 foreach ($list as $item) {
 if (is_dir($item)) {
 $list = array_merge($list, someDirScan($item));
 }
 }
 return $list;
}

Usage of the static keyword inside functions has been in the language
for more than 12 years. What static does is to initialize the variable once
(that is, at the time static is declared), and then retain the value between
function calls within the same request.
If you need to retain the value of a variable between HTTP requests, make
sure the PHP session has been started and store the value in $_SESSION.

5.	 Functions are constrained when defined within a PHP namespace. This characteristic
can be used to your advantage to provide additional logical separation between
libraries of functions. In order to anchor the namespace, you need to add the use
keyword. The following examples are placed in separate namespaces. Notice that
even though the function name is the same, there is no conflict as they are not visible
to each other.

Working with PHP Functional Programming

56

6.	 We define someFunction() in namespace Alpha. We save this to a separate PHP
file, chap_03_developing_functions_namespace_alpha.php:
<?php
namespace Alpha;

function someFunction()
{
 echo __NAMESPACE__ . ':' . __FUNCTION__ . PHP_EOL;
}

7.	 We then define someFunction() in namespace Beta. We save this to a separate
PHP file, chap_03_developing_functions_namespace_beta.php:
<?php
namespace Beta;

function someFunction()
{
 echo __NAMESPACE__ . ':' . __FUNCTION__ . PHP_EOL;
}

8.	 We can then call someFunction() by prefixing the function name with the
namespace name:

include (__DIR__ . DIRECTORY_SEPARATOR
 . 'chap_03_developing_functions_namespace_alpha.php');
include (__DIR__ . DIRECTORY_SEPARATOR
 . 'chap_03_developing_functions_namespace_beta.php');
 echo Alpha\someFunction();
 echo Beta\someFunction();

Best practice
It is considered best practice to place function libraries (and classes
too!) into separate files: one file per namespace, and one class or
function library per file.
It is possible to define many classes or function libraries in a single
namespace. The only reason you would develop into a separate
namespace is if you want to foster logical separation of functionality.

Chapter 3

57

How it works…
It is considered best practice to place all logically related functions into a separate PHP file.
Create a file called chap_03_developing_functions_library.php and place these
functions (described previously) inside:

ff someName()

ff someOtherName()

ff someInfinite()

ff someDirScan()

ff someTypeHint()

This file is then included in the code that uses these functions.

include (__DIR__ . DIRECTORY_SEPARATOR . 'chap_03_developing_
functions_library.php');

To call the someName() function, use the name and supply the parameter.

echo someName('TEST'); // returns "INIT and also TEST"

You can call the someOtherName() function using one or two parameters, as shown here:

echo someOtherName(1); // returns 1
echo someOtherName(1, 1); // returns 2

The someInfinite() function accepts an infinite (or variable) number of parameters.
Here are a couple of examples calling this function:

echo someInfinite(1, 2, 3);
echo PHP_EOL;
echo someInfinite(22.22, 'A', ['a' => 1, 'b' => 2]);

Working with PHP Functional Programming

58

The output looks like this:

We can call someDirScan() as follows:

echo someInfinite(1, 2, 3);
echo PHP_EOL;
echo someInfinite(22.22, 'A', ['a' => 1, 'b' => 2]);

The output looks like this:

Chapter 3

59

Hinting at data types
In many cases when developing functions, you might reuse the same library of functions in
other projects. Also, if you work with a team, your code might be used by other developers. In
order to control the use of your code, it might be appropriate to make use of a type hint. This
involves specifying the data type your function expects for that particular parameter.

How to do it…
1.	 Parameters in functions can be prefixed by a type hint. The following type hints are

available in both PHP 5 and PHP 7:

�� Array

�� Class

�� Callable

2.	 If a call to the function is made, and the wrong parameter type is passed, a
TypeError is thrown. The following example requires an array, an instance of
DateTime, and an anonymous function:
function someTypeHint(Array $a, DateTime $t, Callable $c)
{
 $message = '';
 $message .= 'Array Count: ' . count($a) . PHP_EOL;
 $message .= 'Date: ' . $t->format('Y-m-d') . PHP_EOL;
 $message .= 'Callable Return: ' . $c() . PHP_EOL;
 return $message;
}

You don't have to provide a type hint for every single parameter. Use this
technique only where supplying a different data type would have a negative
effect on the processing of your function. As an example, if your function
uses a foreach() loop, if you do not supply an array, or something which
implements Traversable, an error will be generated.

3.	 In PHP 7, presuming the appropriate declare() directive is made, scalar (that
is, integer, float, boolean, and string) type hints are allowed. Another function
demonstrates how this is accomplished. At the top of the code library file which
contains the function in which you wish to use scalar type hinting, add this
declare() directive just after the opening PHP tag:
declare(strict_types=1);

Working with PHP Functional Programming

60

4.	 Now you can define a function that includes scalar type hints:
function someScalarHint(bool $b, int $i, float $f, string $s)
{
 return sprintf("\n%20s : %5s\n%20s : %5d\n%20s " .
 ": %5.2f\n%20s : %20s\n\n",
 'Boolean', ($b ? 'TRUE' : 'FALSE'),
 'Integer', $i,
 'Float', $f,
 'String', $s);
}

5.	 In PHP 7, assuming strict type hinting has been declared, boolean type hinting
works a bit differently from the other three scalar types (that is, integer, float, and
string). You can supply any scalar as an argument and no TypeError will be thrown!
However, the incoming value will automatically be converted to the boolean data
type once passed into the function. If you pass any data type other than scalar (that
is, array or object) a TypeError will be thrown. Here is an example of a function
that defines a boolean data type. Note that the return value will be automatically
converted to a boolean:

function someBoolHint(bool $b)
{
 return $b;
}

How it works…
First of all, you can place the three functions, someTypeHint(), someScalarHint(), and
someBoolHint(), into a separate file to be included. For this example, we will name the
file chap_03_developing_functions_type_hints_library.php. Don't forget to add
declare(strict_types=1) at the top!

In our calling code, you would then include the file:

include (__DIR__ . DIRECTORY_SEPARATOR . 'chap_03_developing_
functions_type_hints_library.php');

To test someTypeHint(), call the function twice, once with the correct data types, and the
second time with incorrect types. This will throw a TypeError, however, so you will need to
wrap the function calls in a try { ... } catch () { ...} block:

try {
 $callable = function () { return 'Callback Return'; };
 echo someTypeHint([1,2,3], new DateTime(), $callable);
 echo someTypeHint('A', 'B', 'C');

Chapter 3

61

} catch (TypeError $e) {
 echo $e->getMessage();
 echo PHP_EOL;
}

As you can see from the output shown at the end of this sub-section, when passing the correct
data types there is no problem. When passing the incorrect types, a TypeError is thrown.

In PHP 7, certain errors have been converted into an Error class, which
is processed in a somewhat similar manner to an Exception. This
means you can catch an Error. TypeError is a specific descendant of
Error that is thrown when incorrect data types are passed to functions.
All PHP 7 Error classes implement the Throwable interface, as does
the Exception class. If you are not sure if you need to catch an Error
or an Exception, you can add a block which catches Throwable.

Next you can test someScalarHint(), calling it twice with correct and incorrect values,
wrapping the calls in a try { ... } catch () { ...} block:

try {
 echo someScalarHint(TRUE, 11, 22.22, 'This is a string');
 echo someScalarHint('A', 'B', 'C', 'D');
} catch (TypeError $e) {
 echo $e->getMessage();
}

As expected, the first call to the function works, and the second throws a TypeError.

When type hinting for boolean values, any scalar value passed will not cause a TypeError
to be thrown! Instead, the value will be interpreted into its boolean equivalent. If you
subsequently return this value, the data type will be changed to boolean.

To test this, call the someBoolHint() function defined previously, and pass any scalar value
in as an argument. The var_dump() method reveals that the data type is always boolean:

try {
 // positive results
 $b = someBooleanHint(TRUE);
 $i = someBooleanHint(11);
 $f = someBooleanHint(22.22);
 $s = someBooleanHint('X');
 var_dump($b, $i, $f, $s);
 // negative results
 $b = someBooleanHint(FALSE);
 $i = someBooleanHint(0);

Working with PHP Functional Programming

62

 $f = someBooleanHint(0.0);
 $s = someBooleanHint('');
 var_dump($b, $i, $f, $s);
} catch (TypeError $e) {
 echo $e->getMessage();
}

If you now try the same function call, but pass in a non-scalar data type, a TypeError
is thrown:

try {
 $a = someBoolHint([1,2,3]);
 var_dump($a);
} catch (TypeError $e) {
 echo $e->getMessage();
}
try {
 $o = someBoolHint(new stdClass());
 var_dump($o);
} catch (TypeError $e) {
 echo $e->getMessage();
}

Here is the overall output:

Chapter 3

63

See also
PHP 7.1 introduced a new type hint iterable which allows arrays, Iterators or
Generators as arguments. See this for more information:

ff https://wiki.php.net/rfc/iterable

For a background discussion on the rationale behind the implementation of scalar type
hinting, have a look at this article:

ff https://wiki.php.net/rfc/scalar_type_hints_v5

Using return value data typing
PHP 7 allows you to specify a data type for the return value of a function. Unlike scalar type
hinting, however, you don't need to add any special declarations.

How to do it…
1.	 This example shows you how to assign a data type to a function return value. To

assign a return data type, first define the function as you would normally. After the
closing parenthesis, add a space, followed by the data type and a colon:
function returnsString(DateTime $date, $format) : string
{
 return $date->format($format);
}

PHP 7.1 introduced a variation on return data typing called nullable types.
All you need to do is to change string to ?string. This allows the
function to return either string or NULL.

2.	 Anything returned by the function, regardless of its data type inside the function, will
be converted to the declared data type as a return value. Notice, in this example,
the values of $a, $b, and $c are added together to produce a single sum, which is
returned. Normally you would expect the return value to be a numeric data type.
In this case, however, the return data type is declared as string, which overrides
PHP's type-juggling process:
function convertsToString($a, $b, $c) : string

 return $a + $b + $c;
}

https://wiki.php.net/rfc/iterable
https://wiki.php.net/rfc/scalar_type_hints_v5

Working with PHP Functional Programming

64

3.	 You can also assign classes as a return data type. In this example, we assign a return
type of DateTime, part of the PHP DateTime extension:
function makesDateTime($year, $month, $day) : DateTime
{
 $date = new DateTime();
 $date->setDate($year, $month, $day);
 return $date;
}

The makesDateTime() function would be a potential candidate for
scalar type hinting. If $year, $month, or $day are not integers, a
Warning is generated when setDate() is called. If you use scalar type
hinting, and the wrong data types are passed, a TypeError is thrown.
Although it really doesn't matter whether a warning is generated or a
TypeError is thrown, at least the TypeError will cause the errant
developer who is misusing your code to sit up and take notice!

4.	 If a function has a return data type, and you return the wrong data type in your
function code, a TypeError will be thrown at runtime. This function assigns a return
type of DateTime, but returns a string instead. A TypeError will be thrown, but not
until runtime, when the PHP engine detects the discrepancy:

function wrongDateTime($year, $month, $day) : DateTime
{
 return date($year . '-' . $month . '-' . $day);
}

If the return data type class is not one of the built-in PHP classes (that is,
a class that is part of the SPL), you will need to make sure the class has
been auto-loaded, or included.

How it works…
First, place the functions mentioned previously into a library file called
chap_03_developing_functions_return_types_library.php. This file needs to be
included in the chap_03_developing_functions_return_types.php script that calls
these functions:

include (__DIR__ . '/chap_03_developing_functions_return_types_
library.php');

Chapter 3

65

Now you can call returnsString(), supplying a DateTime instance and a format string:

$date = new DateTime();
$format = 'l, d M Y';
$now = returnsString($date, $format);
echo $now . PHP_EOL;
var_dump($now);

As expected, the output is a string:

Now you can call convertsToString() and supply three integers as arguments.
Notice that the return type is string:

echo "\nconvertsToString()\n";
var_dump(convertsToString(2, 3, 4));

To demonstrate that, you can assign a class as a return value, call makesDateTime() with
three integer parameters:

echo "\nmakesDateTime()\n";
$d = makesDateTime(2015, 11, 21);
var_dump($d);

Working with PHP Functional Programming

66

Finally, call wrongDateTime() with three integer parameters:

try {
 $e = wrongDateTime(2015, 11, 21);
 var_dump($e);
} catch (TypeError $e) {
 echo $e->getMessage();
}

Notice that a TypeError is thrown at runtime:

There's more…
PHP 7.1 adds a new return value type, void. This is used when you do not wish to return any
value from the function. For more information, please refer to https://wiki.php.net/
rfc/void_return_type.

See also
For more information on return type declarations, see the following articles:

ff http://php.net/manual/en/functions.arguments.php#functions.
arguments.type-declaration.strict

ff https://wiki.php.net/rfc/return_types

https://wiki.php.net/rfc/void_return_type
https://wiki.php.net/rfc/void_return_type
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
http://php.net/manual/en/functions.arguments.php#functions.arguments.type-declaration.strict
https://wiki.php.net/rfc/return_types

Chapter 3

67

For information on nullable types, please refer to this article:

ff https://wiki.php.net/rfc/nullable_types

Using iterators
An iterator is a special type of class that allows you to traverse a container or list. The
keyword here is traverse. What this means is that the iterator provides the means to go
through a list, but it does not perform the traversal itself.

The SPL provides a rich assortment of generic and specialized iterators designed for different
contexts. The ArrayIterator, for example, is designed to allow object-oriented traversal of
arrays. The DirectoryIterator is designed for filesystem scanning.

Certain SPL iterators are designed to work with others, and add value. Examples include
FilterIterator and LimitIterator. The former gives you the ability to remove unwanted
values from the parent iterator. The latter provides a pagination capability whereby you can
designate how many items to traverse along with an offset that determines where to start.

Finally, there are a series of recursive iterators, which allow you to repeatedly call the parent
iterator. An example would be RecursiveDirectoryIterator which scans a directory tree
all the way from a starting point to the last possible subdirectory.

How to do it…
1.	 We first examine the ArrayIterator class. It's extremely easy to use. All you need

to do is to supply an array as an argument to the constructor. After that you can use
any of the methods that are standard to all SPL-based iterators, such as current(),
next(), and so on.
$iterator = new ArrayIterator($array);

Using ArrayIterator converts a standard PHP array into an
iterator. In a certain sense, this provides a bridge between procedural
programming and OOP.

2.	 As an example of a practical use for the iterator, have a look at this example. It takes
an iterator and produces a series of HTML and tags:
function htmlList($iterator)
{
 $output = '';
 while ($value = $iterator->current()) {
 $output .= '' . $value . '';
 $iterator->next();

https://wiki.php.net/rfc/nullable_types

Working with PHP Functional Programming

68

 }
 $output .= '';
 return $output;
}

3.	 Alternatively, you can simply wrap the ArrayIterator instance into a simple
foreach() loop:
function htmlList($iterator)
{
 $output = '';
 foreach($iterator as $value) {
 $output .= '' . $value . '';
 }
 $output .= '';
 return $output;
}

4.	 CallbackFilterIterator is a great way to add value to any existing iterator you
might be using. It allows you to wrap any existing iterator and screen the output. In
this example we'll define fetchCountryName(), which iterates through a database
query which produces a list of country names. First, we define an ArrayIterator
instance from a query that uses the Application\Database\Connection class
defined in Chapter 1, Building a Foundation:
function fetchCountryName($sql, $connection)
{
 $iterator = new ArrayIterator();
 $stmt = $connection->pdo->query($sql);
 while($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $iterator->append($row['name']);
 }
 return $iterator;
}

5.	 Next, we define a filter method, nameFilterIterator(), which accepts a partial
country name as an argument along with the ArrayIterator instance:
function nameFilterIterator($innerIterator, $name)
{
 if (!$name) return $innerIterator;
 $name = trim($name);
 $iterator = new CallbackFilterIterator($innerIterator,
 function($current, $key, $iterator) use ($name) {
 $pattern = '/' . $name . '/i';

Chapter 3

69

 return (bool) preg_match($pattern, $current);
 }
);
 return $iterator;
}

6.	 LimitIterator adds a basic pagination aspect to your applications. To use
this iterator, you only need to supply the parent iterator, an offset, and a limit.
LimitIterator will then only produce a subset of the entire data set starting at the
offset. Taking the same example mentioned in step 2, we'll paginate the results coming
from our database query. We can do this quite simply by wrapping the iterator produced
by the fetchCountryName() method inside a LimitIterator instance:
$pagination = new LimitIterator(fetchCountryName(
$sql, $connection), $offset, $limit);

Be careful when using LimitIterator. It needs to have the entire data
set in memory in order to effect a limit. Accordingly, this would not be a
good tool to use when iterating through large data sets.

7.	 Iterators can be stacked. In this simple example, an ArrayIterator is processed
by a FilterIterator, which in turn is limited by a LimitIterator. First we set
up an instance of ArrayIterator:
$i = new ArrayIterator($a);

8.	 Next, we plug the ArrayIterator into a FilterIterator instance. Note that
we are using the new PHP 7 anonymous class feature. In this case the anonymous
class extends FilterIterator and overrides the accept() method, allowing only
letters with even-numbered ASCII codes:
$f = new class ($i) extends FilterIterator {
 public function accept()
 {
 $current = $this->current();
 return !(ord($current) & 1);
 }
};

9.	 Finally, we supply the FilterIterator instance as an argument to LimitIterator,
and provide an offset (2 in this example) and a limit (6 in this example):
$l = new LimitIterator($f, 2, 6);

Working with PHP Functional Programming

70

10.	 We could then define a simple function to display output, and call each iterator in turn
to see the results on a simple array produced by range('A', 'Z'):
function showElements($iterator)
{
 foreach($iterator as $item) echo $item . ' ';
 echo PHP_EOL;
}

$a = range('A', 'Z');
$i = new ArrayIterator($a);
showElements($i);

11.	 Here is a variation that produces every other letter by stacking a FilterIterator
on top of an ArrayIterator:
$f = new class ($i) extends FilterIterator {
public function accept()
 {
 $current = $this->current();
 return !(ord($current) & 1);
 }
};
showElements($f);

12.	 And here's yet another variation that only produces F H J L N P, which
demonstrates a LimitIterator that consumes a FilterIterator, which in turn
consumes an ArrayIterator. The output of these three examples is as follows:
$l = new LimitIterator($f, 2, 6);
showElements($l);

Chapter 3

71

13.	 Returning to our example that produces a list of country names, suppose, instead
of only the country name, we wished to iterate through a multi-dimensional array
consisting of country names and ISO codes. The simple iterators mentioned so far
would not be sufficient. Instead, we will use what are known as recursive iterators.

14.	 First of all, we need to define a method that uses the database connection class
mentioned previously to pull all columns from the database. As before, we return an
ArrayIterator instance populated with data from the query:
function fetchAllAssoc($sql, $connection)
{
 $iterator = new ArrayIterator();
 $stmt = $connection->pdo->query($sql);
 while($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $iterator->append($row);
 }
 return $iterator;
}

15.	 At first glance one would be tempted to simply wrap a standard ArrayIterator
instance inside RecursiveArrayIterator. Unfortunately, this approach only
performs a shallow iteration, and doesn't give us what we want: an iteration through
all elements of the multi-dimensional array that is returned from a database query:
$iterator = fetchAllAssoc($sql, $connection);
$shallow = new RecursiveArrayIterator($iterator);

16.	 Although this returns an iteration where each item represents a row from the
database query, in this case we wish to provide an iteration that will iterate through
all columns of all rows returned by the query. In order to accomplish this, we'll need to
roll out the big brass by way of a RecursiveIteratorIterator.

17.	 Monty Python fans will revel in the rich irony of this class name as it brings back fond
memories of the The Department of Redundancy Department. Fittingly, this class
causes our old friend the RecursiveArrayIterator class to work overtime and
perform a deep iteration through all levels of the array:

$deep = new RecursiveIteratorIterator($shallow);

How it works…
As a practical example, you can develop a test script which implements filtering and
pagination using iterators. For this illustration, you could call the chap_03_developing_
functions_filtered_and_paginated.php test code file.

First of all, following best practices, place the functions described above into an include file
called chap_03_developing_functions_iterators_library.php. In the test script,
be sure to include this file.

Working with PHP Functional Programming

72

The data source is a table called iso_country_codes, which contains ISO2, ISO3, and
country names. The database connection could be in a config/db.config.php file. You
could also include the Application\Database\Connection class discussed in the
previous chapter:

define('DB_CONFIG_FILE', '/../config/db.config.php');
define('ITEMS_PER_PAGE', [5, 10, 15, 20]);
include (__DIR__ . '/chap_03_developing_functions_iterators_library.
php');
include (__DIR__ . '/../Application/Database/Connection.php');

In PHP 7 you can define constants as arrays. In this example,
ITEMS_PER_PAGE was defined as an array, and used to generate
an HTML SELECT element.

Next, you can process input parameters for the country name and the number of items
per page. The current page number will start at 0 and can be incremented (next page) or
decremented (previous page):

$name = strip_tags($_GET['name'] ?? '');
$limit = (int) ($_GET['limit'] ?? 10);
$page = (int) ($_GET['page'] ?? 0);
$offset = $page * $limit;
$prev = ($page > 0) ? $page - 1 : 0;
$next = $page + 1;

Now you're ready to fire up the database connection and run a simple SELECT query. This
should be placed in a try {} catch {} block. You can then place the iterators to be
stacked inside the try {} block:

try {
 $connection = new Application\Database\Connection(
 include __DIR__ . DB_CONFIG_FILE);
 $sql = 'SELECT * FROM iso_country_codes';
 $arrayIterator = fetchCountryName($sql, $connection);
 $filteredIterator = nameFilterIterator($arrayIterator, $name);
 $limitIterator = pagination(
 $filteredIterator, $offset, $limit);
} catch (Throwable $e) {
 echo $e->getMessage();
}

Now we're ready for the HTML. In this simple example we present a form that lets the user
select the number of items per page and the country name:

<form>
 Country Name:

Chapter 3

73

 <input type="text" name="name"
 value="<?= htmlspecialchars($name) ?>">
 Items Per Page:
 <select name="limit">
 <?php foreach (ITEMS_PER_PAGE as $item) : ?>
 <option<?= ($item == $limit) ? ' selected' : '' ?>>
 <?= $item ?></option>
 <?php endforeach; ?>
 </select>
 <input type="submit" />
</form>
 <a href="?name=<?= $name ?>&limit=<?= $limit ?>
 &page=<?= $prev ?>">
 << PREV
 <a href="?name=<?= $name ?>&limit=<?= $limit ?>
 &page=<?= $next ?>">
 NEXT >>
<?= htmlList($limitIterator); ?>

The output will look something like this:

Finally, in order to test the recursive iteration of the country database lookup, you will need
to include the iterator's library file, as well as the Application\Database\Connection
class:

define('DB_CONFIG_FILE', '/../config/db.config.php');
include (__DIR__ . '/chap_03_developing_functions_iterators_library.
php');
include (__DIR__ . '/../Application/Database/Connection.php');

Working with PHP Functional Programming

74

As before, you should wrap your database query in a try {} catch {} block. You can then
place the code to test the recursive iteration inside the try {} block:

try {
 $connection = new Application\Database\Connection(
 include __DIR__ . DB_CONFIG_FILE);
 $sql = 'SELECT * FROM iso_country_codes';
 $iterator = fetchAllAssoc($sql, $connection);
 $shallow = new RecursiveArrayIterator($iterator);
 foreach ($shallow as $item) var_dump($item);
 $deep = new RecursiveIteratorIterator($shallow);
 foreach ($deep as $item) var_dump($item);
} catch (Throwable $e) {
 echo $e->getMessage();
}

Here is what you can expect to see in terms of output from RecursiveArrayIterator:

Chapter 3

75

Here is the output after using RecursiveIteratorIterator:

Writing your own iterator using generators
In the preceding set of recipes we demonstrated the use of iterators provided in the PHP 7
SPL. But what if this set doesn't provide you with what is needed for a given project? One
solution would be to develop a function that, instead of building an array that is then returned,
uses the yield keyword to return values progressively by way of iteration. Such a function
is referred to as a generator. In fact, in the background, the PHP engine will automatically
convert your function into a special built-in class called Generator.

There are several advantages to this approach. The main benefit is seen when you have
a large container to traverse (that is, parsing a massive file). The traditional approach has
been to build up an array, and then return that array. The problem with this is that you are
effectively doubling the amount of memory required! Also, performance is affected in
that results are only achieved once the final array has been returned.

Working with PHP Functional Programming

76

How to do it…
1.	 In this example we build on the library of iterator-based functions, adding a

generator of our own design. In this case we will duplicate the functionality
described in the section above on iterators where we stacked an ArrayIterator,
FilterIterator, and LimitIterator.

2.	 Because we need access to the source array, the desired filter, page number, and
number of items per page, we include the appropriate parameters into a single
filteredResultsGenerator() function. We then calculate the offset based
on the page number and limit (that is, number of items per page). Next, we loop
through the array, apply the filter, and continue the loop if the offset has not yet been
reached, or break if the limit has been reached:
function filteredResultsGenerator(array $array, $filter,
 $limit = 10, $page = 0)
 {
 $max = count($array);
 $offset = $page * $limit;
 foreach ($array as $key => $value) {
 if (!stripos($value, $filter) !== FALSE) continue;
 if (--$offset >= 0) continue;
 if (--$limit <= 0) break;
 yield $value;
 }
 }

3.	 You'll notice the primary difference between this function and others is the yield
keyword. The effect of this keyword is to signal the PHP engine to produce a
Generator instance and encapsulate the code.

How it works…
To demonstrate the use of the filteredResultsGenerator() function we'll have you
implement a web application that scans a web page and produces a filtered and paginated list
of URLs hoovered from HREF attributes.

First you need to add the code for the filteredResultsGenerator() function to the
library file used in the previous recipe, then place the functions described previously into an
include file, chap_03_developing_functions_iterators_library.php.

Next, define a test script, chap_03_developing_functions_using_generator.php,
that includes both the function library as well as the file that defines Application\Web\
Hoover, described in Chapter 1, Building a Foundation:

Chapter 3

77

include (__DIR__ . DIRECTORY_SEPARATOR . 'chap_03_developing_
functions_iterators_library.php');
include (__DIR__ . '/../Application/Web/Hoover.php');

You will then need to gather input from the user regarding which URL to scan, what string to
use as a filter, how many items per page, and the current page number.

The null coalesce operator (??) is ideal for getting input from the Web.
It does not generate any notices if not defined. If the parameter is not
received from user input, you can supply a default.

$url = trim(strip_tags($_GET['url'] ?? ''));
$filter = trim(strip_tags($_GET['filter'] ?? ''));
$limit = (int) ($_GET['limit'] ?? 10);
$page = (int) ($_GET['page'] ?? 0);

Best practice
Web security should always be a priority consideration. In this example you
can use strip_tags() and also force the data type to integer (int) as
measures to sanitize user input.

You are then in a position to define variables used in links for previous and next pages in
the paginated list. Note that you could also apply a sanity check to make sure the next page
doesn't go off the end of the result set. For the sake of brevity, such a sanity check was not
applied in this example:

$next = $page + 1;
$prev = $page - 1;
$base = '?url=' . htmlspecialchars($url)
 . '&filter=' . htmlspecialchars($filter)
 . '&limit=' . $limit
 . '&page=';

We then need to create an Application\Web\Hoover instance and grab HREF attributes
from the target URL:

$vac = new Application\Web\Hoover();
$list = $vac->getAttribute($url, 'href');

Working with PHP Functional Programming

78

Finally, we define HTML output that renders an input form and runs our generator through the
htmlList() function described previously:

<form>
<table>
<tr>
<th>URL</th>
<td>
<input type="text" name="url"
 value="<?= htmlspecialchars($url) ?>"/>
</td>
</tr>
<tr>
<th>Filter</th>
<td>
<input type="text" name="filter"
 value="<?= htmlspecialchars($filter) ?>"/></td>
</tr>
<tr>
<th>Limit</th>
<td><input type="text" name="limit" value="<?= $limit ?>"/></td>
</tr>
<tr>
<th> </th><td><input type="submit" /></td>
</tr>
<tr>
<td> </td>
<td>
<a href="<?= $base . $prev ?>"><-- PREV |
<a href="<?= $base . $next ?>">NEXT --></td>
</tr>
</table>
</form>
<hr>
<?= htmlList(filteredResultsGenerator(
$list, $filter, $limit, $page)); ?>

Chapter 3

79

Here is an example of the output:

81

4
Working with PHP

Object-Oriented
Programming

In this chapter we will cover:

ff Developing classes

ff Extending classes

ff Using static properties and methods

ff Using namespaces

ff Defining visibility

ff Using interfaces

ff Using traits

ff Implementing anonymous classes

Introduction
In this chapter, we will consider recipes that take advantage of the object-oriented
programming (OOP) capabilities available in PHP 7.0, 7.1, and above. Most of the OOP
functionality available in PHP 7.x is also available in PHP 5.6. A new feature introduced in
PHP 7 is support for anonymous classes. In PHP 7.1, you can modify the visibility of class
constants.

Working with PHP Object-Oriented Programming

82

Another radically new feature is the ability to catch certain types of error.
This is discussed in greater detail in Chapter 13, Best Practices, Testing,
and Debugging.

Developing classes
The traditional development approach is to place the class into its own file. Typically, classes
contain logic that implements a single purpose. Classes are further broken down into
self-contained functions which are referred to as methods. Variables defined inside classes
are referred to as properties. It is recommended to develop a test class at the same time, a
topic discussed in more detail in Chapter 13, Best Practices, Testing, and Debugging.

How to do it...
1.	 Create a file to contain the class definition. For the purposes of autoloading it is

recommended that the filename match the classname. At the top of the file, before
the keyword class, add a DocBlock. You can then define properties and methods.
In this example, we define a class Test. It has a property $test, and a method
getTest():
<?php
declare(strict_types=1);
/**
 * This is a demonstration class.
 *
 * The purpose of this class is to get and set
 * a protected property $test
 *
 */
class Test
{

 protected $test = 'TEST';

 /**
 * This method returns the current value of $test
 *
 * @return string $test
 */
 public function getTest() : string
 {
 return $this->test;
 }

Chapter 4

83

 /**
 * This method sets the value of $test
 *
 * @param string $test
 * @return Test $this
 */
 public function setTest(string $test)
 {
 $this->test = $test;
 return $this;
 }
}

Best practice
It is considered best practice to name the file after the class. Although class
names in PHP are not case sensitive, it is further considered best practice
to use an uppercase letter for the first name of a class. You should not put
executable code in a class definition file.
Each class should contain a DocBlock before the keyword class. In the
DocBlock you should include a short description of the purpose of the class.
Skip a line, and then include a more detailed description. You can also
include @ tags such as @author, @license and so on. Each method should
likewise be preceded by a DocBlock that identifies the purpose of the method,
as well as its incoming parameters and return value.

2.	 It's possible to define more than one class per file, but is not considered best
practice. In this example we create a file, NameAddress.php, which defines two
classes, Name and Address:
<?php
declare(strict_types=1);
class Name
{

 protected $name = '';

 public function getName() : string
 {
 return $this->name;
 }

 public function setName(string $name)
 {

Working with PHP Object-Oriented Programming

84

 $this->name = $name;

 return $this;
 }
}

class Address
{

 protected $address = '';

 public function getAddress() : string
 {
 return $this->address;
 }

 public function setAddress(string $address)
 {
 $this->address = $address;
 return $this;
 }
}

Although you can define more than one class in a single file, as shown
in the preceding code snippet, it is not considered best practice.
Not only does this negate the logical purity of the file, but it makes
autoloading more difficult.

3.	 Class names are case-insensitive. Duplications will be flagged as errors. In this
example, in a file TwoClass.php, we define two classes, TwoClass and twoclass:
<?php
class TwoClass
{
 public function showOne()
 {
 return 'ONE';
 }
}

// a fatal error will occur when the second class definition is
parsed
class twoclass
{

Chapter 4

85

 public function showTwo()
 {
 return 'TWO';
 }
}

4.	 PHP 7.1 has addressed inconsistent behavior in the use of the keyword $this.
Although permitted in PHP 7.0 and PHP 5.x, any of the following uses of $this will
now generate an error as of PHP 7.1, if $this is used as:

�� A parameter

�� A static variable

�� A global variable

�� A variable used in try…catch blocks

�� A variable used in foreach()

�� As an argument to unset()

�� As a variable (that is, $a = 'this'; echo $$a)

�� Indirectly via reference

5.	 If you need to create an object instance but don't care to define a discreet class,
you can use the generic stdClass which is built into PHP. stdClass allows you
to define properties on the fly without having to define a discreet class that extends
stdClass:
$obj = new stdClass();

6.	 This facility is used in a number of different places in PHP. As an example, when
you use PHP Data Objects (PDO) to do a database query, one of the fetch modes is
PDO::FETCH_OBJ. This mode returns instances of stdClass where the properties
represent database table columns:

$stmt = $connection->pdo->query($sql);
$row = $stmt->fetch(PDO::FETCH_OBJ);

How it works...
Take the example for the Test class shown in the preceding code snippet, and place the code
in a file named Test.php. Create another file called chap_04_oop_defining_class_
test.php. Add the following code:

require __DIR__ . '/Test.php';

$test = new Test();
echo $test->getTest();
echo PHP_EOL;

Working with PHP Object-Oriented Programming

86

$test->setTest('ABC');
echo $test->getTest();
echo PHP_EOL;

The output will show the initial value of the $test property, followed by the new value
modified by calling setTest():

The next example has you define two classes, Name and Address in a single file
NameAddress.php. You can call and use these two classes with the following code:

require __DIR__ . '/NameAddress.php';

$name = new Name();
$name->setName('TEST');
$addr = new Address();
$addr->setAddress('123 Main Street');

echo $name->getName() . ' lives at ' . $addr->getAddress();

Although no errors are generated by the PHP interpreter, by defining
multiple classes, the logical purity of the file is compromised. Also, the
filename doesn't match the classname, which could impact the ability to
autoload.

Chapter 4

87

The output from this example is shown next:

Step 3 also shows two class definitions in one file. In this case, however, the objective is
to demonstrate that classnames in PHP are case-insensitive. Place the code into a file,
TwoClass.php. When you try to include the file, an error is generated:

To demonstrate the direct use of stdClass, create an instance, assign a value to a property,
and use var_dump()to display the results. To see how stdClass is used internally, use
var_dump() to display the results of a PDO query where the fetch mode is set to FETCH_OBJ.

Working with PHP Object-Oriented Programming

88

Enter the following code:

$obj = new stdClass();
$obj->test = 'TEST';
echo $obj->test;
echo PHP_EOL;

include (__DIR__ . '/../Application/Database/Connection.php');
$connection = new Application\Database\Connection(
 include __DIR__ . DB_CONFIG_FILE);

$sql = 'SELECT * FROM iso_country_codes';
$stmt = $connection->pdo->query($sql);
$row = $stmt->fetch(PDO::FETCH_OBJ);
var_dump($row);

Here is the output:

See also…
For more information on refinements in PHP 7.1 on the keyword $this, please see
https://wiki.php.net/rfc/this_var.

Extending classes
One of the primary reasons developers use OOP is because of its ability to re-use existing
code, yet, at the same time, add or override functionality. In PHP, the keyword extends is
used to establish a parent/child relationship between classes.

https://wiki.php.net/rfc/this_var

Chapter 4

89

How to do it...
1.	 In the child class, use the keyword extends to set up inheritance. In the example

that follows, the Customer class extends the Base class. Any instance of Customer
will inherit visible methods and properties, in this case, $id, getId() and setId():
class Base
{
 protected $id;
 public function getId()
 {
 return $this->id;
 }
 public function setId($id)
 {
 $this->id = $id;
 }
}

class Customer extends Base
{
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
}

2.	 You can force any developer using your class to define a method by marking it
abstract. In this example, the Base class defines as abstract the validate()
method. The reason why it must be abstract is because it would be impossible to
determine exactly how a child class would be validated from the perspective of the
parent Base class:
abstract class Base
{
 protected $id;
 public function getId()
 {
 return $this->id;
 }

Working with PHP Object-Oriented Programming

90

 public function setId($id)
 {
 $this->id = $id;
 }
 public function validate();
}

If a class contains an abstract method, the class itself must be declared as
abstract.

3.	 PHP only supports a single line of inheritance. The next example shows a class,
Member, which inherits from Customer. Customer, in turn, inherits from Base:
class Base
{
 protected $id;
 public function getId()
 {
 return $this->id;
 }
 public function setId($id)
 {
 $this->id = $id;
 }
}

class Customer extends Base
{
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
}

class Member extends Customer
{
 protected $membership;
 public function getMembership()
 {

Chapter 4

91

 return $this->membership;
 }
 public function setMembership($memberId)
 {
 $this->membership = $memberId;
 }
}

4.	 To satisfy a type-hint, any child of the target class can be used. The test() function,
shown in the following code snippet, requires an instance of the Base class as an
argument. Any class within the line of inheritance can be accepted as an argument.
Anything else passed to test() throws a TypeError:

function test(Base $object)
{
 return $object->getId();
}

How it works...
In the first bullet point, a Base class and a Customer class were defined. For the sake of
demonstration, place these two class definitions in a single file, chap_04_oop_extends.
php, and add the following code:

$customer = new Customer();
$customer->setId(100);
$customer->setName('Fred');
var_dump($customer);

Note that the $id property and the getId() and setId() methods are inherited from the
parent Base class into the child Customer class:

Working with PHP Object-Oriented Programming

92

To illustrate the use of an abstract method, imagine that you wish to add some sort of
validation capability to any class that extends Base. The problem is that there is no way to
know what might be validated in the inherited classes. The only thing that is certain is that
you must have a validation capability.

Take the same Base class mentioned in the preceding explanation and add a new method,
validate(). Label the method as abstract, and do not define any code. Notice what
happens when the child Customer class extends Base.

If you then label the Base class as abstract, but fail to define a validate() method
in the child class, the same error will be generated. Finally, go ahead and implement the
validate() method in a child Customer class:

class Customer extends Base
{
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
 public function validate()
 {
 $valid = 0;
 $count = count(get_object_vars($this));

Chapter 4

93

 if (!empty($this->id) &&is_int($this->id)) $valid++;
 if (!empty($this->name)
 &&preg_match('/[a-z0-9]/i', $this->name)) $valid++;
 return ($valid == $count);
 }
}

You can then add the following procedural code to test the results:

$customer = new Customer();

$customer->setId(100);
$customer->setName('Fred');
echo "Customer [id]: {$customer->getName()}" .
 . "[{$customer->getId()}]\n";
echo ($customer->validate()) ? 'VALID' : 'NOT VALID';
$customer->setId('XXX');
$customer->setName('$%£&*()');
echo "Customer [id]: {$customer->getName()}"
 . "[{$customer->getId()}]\n";
echo ($customer->validate()) ? 'VALID' : 'NOT VALID';

Here is the output:

To show a single line of inheritance, add a new Member class to the first example of Base and
Customer shown in the preceding step 1:

class Member extends Customer
{
 protected $membership;
 public function getMembership()

Working with PHP Object-Oriented Programming

94

 {
 return $this->membership;
 }
 public function setMembership($memberId)
 {
 $this->membership = $memberId;
 }
}

Create an instance of Member, and notice, in the following code, that all properties and
methods are available from every inherited class, even if not directly inherited:

$member = new Member();
$member->setId(100);
$member->setName('Fred');
$member->setMembership('A299F322');
var_dump($member);

Here is the output:

Now define a function, test(), which takes an instance of Base as an argument:

function test(Base $object)
{
 return $object->getId();
}

Notice that instances of Base, Customer, and Member are all acceptable as arguments:

$base = new Base();
$base->setId(100);

Chapter 4

95

$customer = new Customer();
$customer->setId(101);

$member = new Member();
$member->setId(102);

// all 3 classes work in test()
echo test($base) . PHP_EOL;
echo test($customer) . PHP_EOL;
echo test($member) . PHP_EOL;

Here is the output:

However, if you try to run test() with an object instance that is not in the line of inheritance,
a TypeError is thrown:

class Orphan
{
 protected $id;
 public function getId()
 {
 return $this->id;
 }
 public function setId($id)
 {
 $this->id = $id;
 }
}
try {

Working with PHP Object-Oriented Programming

96

 $orphan = new Orphan();
 $orphan->setId(103);
 echo test($orphan) . PHP_EOL;
} catch (TypeError $e) {
 echo 'Does not work!' . PHP_EOL;
 echo $e->getMessage();
}

We can observe this in the following image:

Using static properties and methods
PHP lets you access properties or methods without having to create an instance of the class.
The keyword used for this purpose is static.

How to do it...
1.	 At its simplest, simply add the static keyword after stating the visibility level when

declaring an ordinary property or method. Use the self keyword to reference the
property internally:
class Test
{
 public static $test = 'TEST';
 public static function getTest()
 {

Chapter 4

97

 return self::$test;
 }
}

2.	 The self keyword will bind early, which will cause problems when accessing static
information in child classes. If you absolutely need to access information from the
child class, use the static keyword in place of self. This process is referred to as
Late Static Binding.

3.	 In the following example, if you echo Child::getEarlyTest(), the output will be
TEST. If, on the other hand, you run Child::getLateTest(), the output will be
CHILD. The reason is that PHP will bind to the earliest definition when using self,
whereas the latest binding is used for the static keyword:
class Test2
{
 public static $test = 'TEST2';
 public static function getEarlyTest()
 {
 return self::$test;
 }
 public static function getLateTest()
 {
 return static::$test;
 }
}

class Child extends Test2
{
 public static $test = 'CHILD';
}

4.	 In many cases, the Factory design pattern is used in conjunction with static methods
to produce instances of objects given different parameters. In this example, a static
method factory() is defined which returns a PDO connection:

public static function factory(
 $driver,$dbname,$host,$user,$pwd,array $options = [])
 {
 $dsn = sprintf('%s:dbname=%s;host=%s',
 $driver, $dbname, $host);
 try {
 return new PDO($dsn, $user, $pwd, $options);
 } catch (PDOException $e) {
 error_log($e->getMessage);
 }
 }

Working with PHP Object-Oriented Programming

98

How it works...
You can reference static properties and methods using the class resolution operator "::".
Given the Test class shown previously, if you run this code:

echo Test::$test;
echo PHP_EOL;
echo Test::getTest();
echo PHP_EOL;

You will see this output:

To illustrate Late Static Binding, based on the classes Test2 and Child shown previously, try
this code:

echo Test2::$test;
echo Child::$test;
echo Child::getEarlyTest();
echo Child::getLateTest();

The output illustrates the difference between self and static:

Chapter 4

99

Finally, to test the factory() method shown previously, save the code into the
Application\Database\Connection class in a Connection.php file in the
Application\Database folder. You can then try this:

include __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
$connection = Connection::factory(
'mysql', 'php7cookbook', 'localhost', 'test', 'password');
$stmt = $connection->query('SELECT name FROM iso_country_codes');
while ($country = $stmt->fetch(PDO::FETCH_COLUMN))
echo $country . '';

You will see a list of countries pulled from the sample database:

Working with PHP Object-Oriented Programming

100

See also
For more information on Late Static Binding, see this explanation in the PHP documentation:

http://php.net/manual/en/language.oop5.late-static-bindings.php

Using namespaces
An aspect that is critical to advanced PHP development is the use of namespaces. The
arbitrarily defined namespace becomes a prefix to the class name, thereby avoiding
the problem of accidental class duplication, and allowing you extraordinary freedom of
development. Another benefit to the use of a namespace, assuming it matches the directory
structure, is that it facilitates autoloading, as discussed in Chapter 1, Building a Foundation.

How to do it...
1.	 To define a class within a namespace, simply add the keyword namespace at the top

of the code file:
namespace Application\Entity;

Best practice
As with the recommendation to have only one class per file, likewise you
should have only one namespace per file.

2.	 The only PHP code that should precede the keyword namespace would be a
comment and/or the keyword declare:
<?php
declare(strict_types=1);
namespace Application\Entity;
/**
 * Address
 *
 */
class Address
{
 // some code
}

http://php.net/manual/en/language.oop5.late-static-bindings.php

Chapter 4

101

3.	 In PHP 5, if you needed to access a class in an external namespace you could
prepend a use statement containing only the namespace. You would need to then
prefix any class reference within this namespace with the last component of the
namespace:
use Application\Entity;
$name = new Entity\Name();
$addr = new Entity\Address();
$prof = new Entity\Profile();

4.	 Alternatively, you could distinctly specify all three classes:
use Application\Entity\Name;
use Application\Entity\Address;
use Application\Entity\Profile;
$name = new Name();
$addr = new Address();
$prof = new Profile();

5.	 PHP 7 has introduced a syntactical improvement referred to as group use which
greatly improves code readability:
use Application\Entity\ {
 Name,
 Address,
 Profile
};
$name = new Name();
$addr = new Address();
$prof = new Profile();

6.	 As mentioned in Chapter 1, Building a Foundation, namespaces form an integral
part of the autoloading process. This example shows a demonstration autoloader
which echoes the argument passed, and then attempts to include a file based on the
namespace and class name. This assumes that the directory structure matches the
namespace:

function __autoload($class)
{
 echo "Argument Passed to Autoloader = $class\n";
 include __DIR__ . '/../' . str_replace(
 '\\', DIRECTORY_SEPARATOR, $class) . '.php';
}

Working with PHP Object-Oriented Programming

102

How it works...
For illustration purposes, define a directory structure that matches the Application*
namespace. Create a base folder Application, and a sub-folder Entity. You can also
include any sub-folders as desired, such as Database and Generic, used in other chapters:

Next, create three entity classes, each in their own file, under the Application/Entity
folder: Name.php, Address.php, and Profile.php. We only show Application\
Entity\Name here. Application\Entity\Address and Application\Entity\
Profile will be the same, except that Address has an $address property, and Profile
has a $profile property, each with an appropriate get and set method:

<?php
declare(strict_types=1);
namespace Application\Entity;
/**
 * Name
 *
 */
class Name
{

 protected $name = '';

 /**
 * This method returns the current value of $name
 *
 * @return string $name
 */
 public function getName() : string
 {
 return $this->name;
 }

 /**

Chapter 4

103

 * This method sets the value of $name
 *
 * @param string $name
 * @return name $this
 */
 public function setName(string $name)
 {
 $this->name = $name;
 return $this;
 }
}

You can then either use the autoloader defined in Chapter 1, Building a Foundation, or use
the simple autoloader mentioned previously. Place the commands to set up autoloading in
a file, chap_04_oop_namespace_example_1.php. In this file, you can then specify a use
statement which only references the namespace, not the class names. Create instances of
the three entity classes Name, Address and Profile, by prefixing the class name with the
last part of the namespace, Entity:

use Application\Entity;
$name = new Entity\Name();
$addr = new Entity\Address();
$prof = new Entity\Profile();

var_dump($name);
var_dump($addr);
var_dump($prof);

Here is the output:

Working with PHP Object-Oriented Programming

104

Next, use Save as to copy the file to a new one named chap_04_oop_namespace_
example_2.php. Change the use statement to the following:

use Application\Entity\Name;
use Application\Entity\Address;
use Application\Entity\Profile;

You can now create class instances using only the class name:

$name = new Name();
$addr = new Address();
$prof = new Profile();

When you run this script, here is the output:

Finally, again run Save as and create a new file, chap_04_oop_namespace_example_3.
php. You can now test the group use feature introduced in PHP 7:

use Application\Entity\ {
 Name,
 Address,
 Profile
};
$name = new Name();
$addr = new Address();
$prof = new Profile();

Chapter 4

105

Again, when you run this block of code, the output will be the same as the preceding output:

Defining visibility
Deceptively, the word visibility has nothing to do with application security! Instead it is simply a
mechanism to control the use of your code. It can be used to steer an inexperienced developer
away from the public use of methods that should only be called inside the class definition.

How to do it...
1.	 Indicate the visibility level by prepending the public, protected, or private

keyword in front of any property or method definition. You can label properties
as protected or private to enforce access only through public getters and
setters.

2.	 In this example, a Base class is defined with a protected property $id. In order to
access this property, the getId() and setId() public methods are defined. The
protected method generateRandId() can be used internally, and is inherited in
the Customer child class. This method cannot be called directly outside of class
definitions. Note the use of the new PHP 7 random_bytes() function to create a
random ID.
class Base
{
 protected $id;
 private $key = 12345;

Working with PHP Object-Oriented Programming

106

 public function getId()
 {
 return $this->id;
 }
 public function setId()
 {
 $this->id = $this->generateRandId();
 }
 protected function generateRandId()
 {
 return unpack('H*', random_bytes(8))[1];
 }
}

class Customer extends Base
{
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }

}

Best practice
Mark properties as protected, and define the
publicgetNameOfProperty() and setNameOfProperty() methods
to control access to the property. Such methods are referred to as getters
and setters.

3.	 Mark a property or method as private to prevent it from being inherited or visible
from outside the class definition. This is a good way to create a class as a singleton.

4.	 The next code example shows a class Registry, of which there can only be one
instance. Because the constructor is marked as private, the only way an instance
can be created is through the static method getInstance():
class Registry
{
 protected static $instance = NULL;
 protected $registry = array();
 private function __construct()

Chapter 4

107

 {
 // nobody can create an instance of this class
 }
 public static function getInstance()
 {
 if (!self::$instance) {
 self::$instance = new self();
 }
 return self::$instance;
 }
 public function __get($key)
 {
 return $this->registry[$key] ?? NULL;
 }
 public function __set($key, $value)
 {
 $this->registry[$key] = $value;
 }
}

You can mark a method as final to prevent it from being overridden. Mark a
class as final to prevent it from being extended.

5.	 Normally, class constants are considered to have a visibility level of public. As
of PHP 7.1, you can declare class constants to be protected or private. In the
following example, the TEST_WHOLE_WORLD class constant behaves exactly as in
PHP 5. The next two constants, TEST_INHERITED and TEST_LOCAL, follow the
same rules as any protected or private property or method:

class Test
{

 public const TEST_WHOLE_WORLD = 'visible.everywhere';

 // NOTE: only works in PHP 7.1 and above
 protected const TEST_INHERITED = 'visible.in.child.classes';

 // NOTE: only works in PHP 7.1 and above
 private const TEST_LOCAL= 'local.to.class.Test.only';

 public static function getTestInherited()
 {
 return static::TEST_INHERITED;

Working with PHP Object-Oriented Programming

108

 }

 public static function getTestLocal()
 {
 return static::TEST_LOCAL;
 }

}

How it works...
Create a file chap_04_basic_visibility.php and define two classes: Base and
Customer. Next, write code to create instances of each:

$base = new Base();
$customer = new Customer();

Notice that the following code works OK, and is in fact considered the best practice:

$customer->setId();
$customer->setName('Test');
echo 'Welcome ' . $customer->getName() . PHP_EOL;
echo 'Your new ID number is: ' . $customer->getId() . PHP_EOL;

Even though $id is protected, the corresponding methods, getId() and setId(), are
both public, and therefore accessible from outside the class definition. Here is the output:

Chapter 4

109

The following lines of code will not work, however, as private and protected properties
are not accessible from outside the class definition:

echo 'Key (does not work): ' . $base->key;
echo 'Key (does not work): ' . $customer->key;
echo 'Name (does not work): ' . $customer->name;
echo 'Random ID (does not work): ' . $customer->generateRandId();

The following output shows the expected errors:

See also
For more information on getters and setters, see the recipe in this chapter entitled Using
getters and setters. For more information on PHP 7.1 class constant visibility settings, please
see https://wiki.php.net/rfc/class_const_visibility.

Using interfaces
Interfaces are useful tools for systems architects and are often used to prototype an
Application Programming Interface (API). Interfaces don't contain actual code, but can
contain names of methods as well as method signatures.

All methods identified in the Interface have a visibility level of public.

https://wiki.php.net/rfc/class_const_visibility

Working with PHP Object-Oriented Programming

110

How to do it...
1.	 Methods identified by the interface cannot contain actual code implementations. You

can, however, specify the data types of method arguments.

2.	 In this example, ConnectionAwareInterface identifies a method,
setConnection(), which requires an instance of Connection as an argument:
interface ConnectionAwareInterface
{
 public function setConnection(Connection $connection);
}

3.	 To use the interface, add the keyword implements after the open line that defines
the class. We have defined two classes, CountryList and CustomerList,
both of which require access to the Connection class via a method,
setConnection(). In order to identify this dependency, both classes implement
ConnectionAwareInterface:
class CountryList implements ConnectionAwareInterface
{
 protected $connection;
 public function setConnection(Connection $connection)
 {
 $this->connection = $connection;
 }
 public function list()
 {
 $list = [];
 $stmt = $this->connection->pdo->query(
 'SELECT iso3, name FROM iso_country_codes');
 while ($country = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $list[$country['iso3']] = $country['name'];
 }
 return $list;
 }

}
class CustomerList implements ConnectionAwareInterface
{
 protected $connection;
 public function setConnection(Connection $connection)
 {
 $this->connection = $connection;
 }
 public function list()
 {

Chapter 4

111

 $list = [];
 $stmt = $this->connection->pdo->query(
 'SELECT id, name FROM customer');
 while ($customer = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $list[$customer['id']] = $customer['name'];
 }
 return $list;
 }

}

4.	 Interfaces can be used to satisfy a type hint. The following class, ListFactory,
contains a factory() method, which initializes any class that implements
ConnectionAwareInterface. The interface is a guarantee that the
setConnection() method is defined. Setting the type hint to the interface instead
of a specific class instance makes the factory method more generically useful:
namespace Application\Generic;

use PDO;
use Exception;
use Application\Database\Connection;
use Application\Database\ConnectionAwareInterface;

class ListFactory
{
 const ERROR_AWARE = 'Class must be Connection Aware';
 public static function factory(
 ConnectionAwareInterface $class, $dbParams)
 {
 if ($class instanceofConnectionAwareInterface) {
 $class->setConnection(new Connection($dbParams));
 return $class;
 } else {
 throw new Exception(self::ERROR_AWARE);
 }
 return FALSE;
 }
}

Working with PHP Object-Oriented Programming

112

5.	 If a class implements multiple interfaces, a naming collision occurs if method
signatures do not match. In this example, there are two interfaces, DateAware and
TimeAware. In addition to defining the setDate() and setTime() methods, they
both define setBoth(). Having duplicate method names is not an issue, although
it is not considered best practice. The problem lies in the fact that the method
signatures differ:
interface DateAware
{
 public function setDate($date);
 public function setBoth(DateTime $dateTime);
}

interface TimeAware
{
 public function setTime($time);
 public function setBoth($date, $time);
}

class DateTimeHandler implements DateAware, TimeAware
{
 protected $date;
 protected $time;
 public function setDate($date)
 {
 $this->date = $date;
 }
 public function setTime($time)
 {
 $this->time = $time;
 }
 public function setBoth(DateTime $dateTime)
 {
 $this->date = $date;
 }
}

Chapter 4

113

6.	 As the code block stands, a fatal error will be generated (which cannot be caught!).
To resolve the problem, the preferred approach would be to remove the definition
of setBoth() from one or the other interface. Alternatively, you could adjust the
method signatures to match.

Best practice
Do not define interfaces with duplicate or overlapping method definitions.

How it works...
In the Application/Database folder, create a file, ConnectionAwareInterface.php.
Insert the code discussed in the preceding step 2.

Next, in the Application/Generic folder, create two files, CountryList.php and
CustomerList.php. Insert the code discussed in step 3.

Next, in a directory parallel to the Application directory, create a source code file,
chap_04_oop_simple_interfaces_example.php, which initializes the autoloader and
includes the database parameters:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
$params = include __DIR__ . DB_CONFIG_FILE;

The database parameters in this example are assumed to be in a database configuration file
indicated by the DB_CONFIG_FILE constant.

You are now in a position to use ListFactory::factory() to generate
CountryList and CustomerList objects. Note that if these classes did not implement
ConnectionAwareInterface, an error would be thrown:

 $list = Application\Generic\ListFactory::factory(
 new Application\Generic\CountryList(), $params);
 foreach ($list->list() as $item) echo $item . '';

Working with PHP Object-Oriented Programming

114

Here is the output for country list:

You can also use the factory method to generate a CustomerList object and use it:

 $list = Application\Generic\ListFactory::factory(
 new Application\Generic\CustomerList(), $params);
 foreach ($list->list() as $item) echo $item . '';

Here is the output for CustomerList:

Chapter 4

115

If you want to examine what happens when multiple interfaces are implemented, but where
the method signature differs, enter the code shown in the preceding step 4 into a file,
chap_04_oop_interfaces_collisions.php. When you try to run the file, an error is
generated, as shown here:

If you make the following adjustment in the TimeAware interface, no errors will result:

interface TimeAware
{
 public function setTime($time);
 // this will cause a problem
 public function setBoth(DateTime $dateTime);
}

Using traits
If you have ever done any C programming, you are perhaps familiar with macros. A macro is
a predefined block of code that expands at the line indicated. In a similar manner, traits can
contain blocks of code that are copied and pasted into a class at the line indicated by the
PHP interpreter.

Working with PHP Object-Oriented Programming

116

How to do it...
1.	 Traits are identified with the keyword trait, and can contain properties and/or

methods. You may have noticed duplication of code when examining the previous
recipe featuring the CountryList and CustomerList classes. In this example, we
will re-factor the two classes, and move the functionality of the list() method into a
Trait. Notice that the list() method is the same in both classes.

2.	 Traits are used in situations where there is duplication of code between classes.
Please note, however, that the conventional approach to creating an abstract class
and extending it might have certain advantages over using traits. Traits cannot be
used to identify a line of inheritance, whereas abstract parent classes can be used
for this purpose.

3.	 We will now copy list() into a trait called ListTrait:
trait ListTrait
{
 public function list()
 {
 $list = [];
 $sql = sprintf('SELECT %s, %s FROM %s',
 $this->key, $this->value, $this->table);
 $stmt = $this->connection->pdo->query($sql);
 while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $list[$item[$this->key]] =
 $item[$this->value];
 }
 return $list;
 }
}

4.	 We can then insert the code from ListTrait into a new class,
CountryListUsingTrait, as shown in the following code snippet. The entire
list() method can now be removed from this class:
class CountryListUsingTrait implements ConnectionAwareInterface
{

 use ListTrait;

 protected $connection;
 protected $key = 'iso3';
 protected $value = 'name';
 protected $table = 'iso_country_codes';

 public function setConnection(Connection $connection)

Chapter 4

117

 {
 $this->connection = $connection;
 }

}

Any time you have duplication of code, a potential problem arises when you
need to make a change. You might find yourself having to do too many global
search and replace operations, or cutting and pasting of code, often with
disastrous results. Traits are a great way to avoid this maintenance nightmare.

5.	 Traits are affected by namespaces. In the example shown in step 1, if our new
CountryListUsingTrait class is placed into a namespace, Application\
Generic, we will also need to move ListTrait into that namespace as well:
namespace Application\Generic;

use PDO;

trait ListTrait
{
 public function list()
 {
 // code as shown above
 }
}

6.	 Methods in traits override inherited methods.

7.	 In the following example, you will notice that the return value for the setId()
method differs between the Base parent class and the Test trait. The Customer
class inherits from Base, but also uses Test. In this case, the method defined in the
trait will override the method defined in the Base parent class:
trait Test
{
 public function setId($id)
 {
 $obj = new stdClass();
 $obj->id = $id;
 $this->id = $obj;
 }
}

class Base

Working with PHP Object-Oriented Programming

118

{
 protected $id;
 public function getId()
 {
 return $this->id;
 }
 public function setId($id)
 {
 $this->id = $id;
 }
}

class Customer extends Base
{
 use Test;
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
}

In PHP 5, traits could also override properties. In PHP 7, if the property in a
trait is initialized to a different value than in the parent class, a fatal error is
generated.

8.	 Methods directly defined in the class that use the trait override duplicate methods
defined in the trait.

9.	 In this example, the Test trait defines a property $id along with the getId()
methods and setId(). The trait also defines setName(), which conflicts with the
same method defined in the Customer class. In this case, the directly defined
setName() method from Customer will override the setName() defined in the trait:
trait Test
{
 protected $id;
 public function getId()
 {
 return $this->id;
 }

Chapter 4

119

 public function setId($id)
 {
 $this->id = $id;
 }
 public function setName($name)
 {
 $obj = new stdClass();
 $obj->name = $name;
 $this->name = $obj;
 }
}

class Customer
{
 use Test;
 protected $name;
 public function getName()
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
}

10.	 Use the insteadof keywords to resolve method name conflicts when using multiple
traits. In conjunction, use the as keyword to alias method names.

11.	 In this example, there are two traits, IdTrait and NameTrait. Both traits define a
setKey() method, but express the key in different ways. The Test class uses both
traits. Note the insteadof keyword, which allows us to distinguish between the
conflicting methods. Thus, when setKey() is called from the Test class, the source
will be drawn from NameTrait. In addition, setKey() from IdTrait will still be
available, but under an alias, setKeyDate():

trait IdTrait
{
 protected $id;
 public $key;
 public function setId($id)
 {
 $this->id = $id;
 }
 public function setKey()
 {

Working with PHP Object-Oriented Programming

120

 $this->key = date('YmdHis')
 . sprintf('%04d', rand(0,9999));
 }
}

trait NameTrait
{
 protected $name;
 public $key;
 public function setName($name)
 {
 $this->name = $name;
 }
 public function setKey()
 {
 $this->key = unpack('H*', random_bytes(18))[1];
 }
}

class Test
{
 use IdTrait, NameTrait {
 NameTrait::setKeyinsteadofIdTrait;
 IdTrait::setKey as setKeyDate;
 }
}

How it works...
From step 1, you learned that traits are used in situations where there is duplication of
code. You need to gauge whether or not you could simply define a base class and extend it,
or whether using a trait better serves your purposes. Traits are especially useful where the
duplication of code is seen in logically unrelated classes.

To illustrate how trait methods override inherited methods, copy the block of code mentioned
in step 7 into a separate file, chap_04_oop_traits_override_inherited.php. Add
these lines of code:

$customer = new Customer();
$customer->setId(100);
$customer->setName('Fred');
var_dump($customer);

As you can see from the output (shown next), the property $id is stored as an instance of
stdClass(), which is the behavior defined in the trait:

Chapter 4

121

To illustrate how directly defined class methods override trait methods, copy the block of
code mentioned in step 9 into a separate file, chap_04_oop_trait_methods_do_not_
override_class_methods.php. Add these lines of code:

$customer = new Customer();
$customer->setId(100);
$customer->setName('Fred');
var_dump($customer);

As you can see from the following output, the $id property is stored as an integer, as defined
in the Customer class, whereas the trait defines $id as an instance of stdClass:

Working with PHP Object-Oriented Programming

122

In step 10, you learned how to resolve duplicate method name conflicts when using multiple
traits. Copy the block of code shown in step 11 into a separate file, chap_04_oop_trait_
multiple.php. Add the following code:

$a = new Test();
$a->setId(100);
$a->setName('Fred');
$a->setKey();
var_dump($a);

$a->setKeyDate();
var_dump($a);

Notice in the following output that setKey() yields the output produced from the new PHP 7
function, random_bytes() (defined in NameTrait), whereas setKeyDate() produces a
key using the date() and rand() functions (defined in IdTrait):

Implementing anonymous classes
PHP 7 introduced a new feature, anonymous classes. Much like anonymous functions,
anonymous classes can be defined as part of an expression, creating a class that has no
name. Anonymous classes are used in situations where you need to create an object on the
fly, which is used and then discarded.

Chapter 4

123

How to do it...
1.	 An alternative to stdClass is to define an anonymous class.

In the definition, you can define any properties and methods (including magic
methods). In this example, we define an anonymous class with two properties and a
magic method, __construct():

$a = new class (123.45, 'TEST') {
 public $total = 0;
 public $test = '';
 public function __construct($total, $test)
 {
 $this->total = $total;
 $this->test = $test;
 }
};

2.	 An anonymous class can extend any class.

In this example, an anonymous class extends FilterIterator, and overrides
both the __construct() and accept() methods. As an argument, it accepts
ArrayIterator $b, which represents an array of 10 to 100 in increments of 10.
The second argument serves as a limit on the output:

$b = new ArrayIterator(range(10,100,10));
$f = new class ($b, 50) extends FilterIterator {
 public $limit = 0;
 public function __construct($iterator, $limit)
 {
 $this->limit = $limit;
 parent::__construct($iterator);
 }
 public function accept()
 {
 return ($this->current() <= $this->limit);
 }
};

3.	 An anonymous class can implement an interface.

In this example, an anonymous class is used to generate an HTML color code chart.
The class implements the built-in PHP Countable interface. A count() method
is defined, which is called when this class is used with a method or function that
requires Countable:

define('MAX_COLORS', 256 ** 3);

$d = new class () implements Countable {

Working with PHP Object-Oriented Programming

124

 public $current = 0;
 public $maxRows = 16;
 public $maxCols = 64;
 public function cycle()
 {
 $row = '';
 $max = $this->maxRows * $this->maxCols;
 for ($x = 0; $x < $this->maxRows; $x++) {
 $row .= '<tr>';
 for ($y = 0; $y < $this->maxCols; $y++) {
 $row .= sprintf(
 '<td style="background-color: #%06X;"',
 $this->current);
 $row .= sprintf(
 'title="#%06X"> </td>',
 $this->current);
 $this->current++;
 $this->current = ($this->current >MAX_COLORS) ? 0
 : $this->current;
 }
 $row .= '</tr>';
 }
 return $row;
 }
 public function count()
 {
 return MAX_COLORS;
 }
};

4.	 Anonymous classes can use traits.

5.	 This last example is a modification from the preceding one defined immediately.
Instead of defining a class Test, we define an anonymous class instead:

$a = new class() {
 use IdTrait, NameTrait {
 NameTrait::setKeyinsteadofIdTrait;
 IdTrait::setKey as setKeyDate;
 }
};

Chapter 4

125

How it works...
In an anonymous class you can define any properties or methods. Using the preceding
example, you could define an anonymous class that accepts constructor arguments, and
where you can access properties. Place the code described in step 2 into a test script
chap_04_oop_anonymous_class.php. Add these echo statements:

echo "\nAnonymous Class\n";
echo $a->total .PHP_EOL;
echo $a->test . PHP_EOL;

Here is the output from the anonymous class:

In order to use FilterIterator you must override the accept() method. In this method,
you define criteria for which elements of the iteration are to be included as output. Go ahead
now and add the code shown in step 4 to the test script. You can then add these echo
statements to test the anonymous class:

echo "\nAnonymous Class Extends FilterIterator\n";
foreach ($f as $item) echo $item . '';
echo PHP_EOL;

Working with PHP Object-Oriented Programming

126

In this example, a limit of 50 is established. The original ArrayIterator contains an array
of values, 10 to 100, in increments of 10, as seen in the following output:

To have a look at an anonymous class that implements an interface, consider the example
shown in steps 5 and 6. Place this code in a file, chap_04_oop_anonymous_class_
interfaces.php.

Next, add code that lets you paginate through the HTML color chart:

$d->current = $_GET['current'] ?? 0;
$d->current = hexdec($d->current);
$factor = ($d->maxRows * $d->maxCols);
$next = $d->current + $factor;
$prev = $d->current - $factor;
$next = ($next <MAX_COLORS) ? $next : MAX_COLORS - $factor;
$prev = ($prev>= 0) ? $prev : 0;
$next = sprintf('%06X', $next);
$prev = sprintf('%06X', $prev);
?>

Finally, go ahead and present the HTML color chart as a web page:

<h1>Total Possible Color Combinations: <?= count($d); ?></h1>
<hr>
<table>
<?= $d->cycle(); ?>
</table>	
<a href="?current=<?= $prev ?>"><<PREV
<a href="?current=<?= $next ?>">NEXT >>

Chapter 4

127

Notice that you can take advantage of the Countable interface by passing the instance of
the anonymous class into the count() function (shown between <H1> tags). Here is the
output shown in a browser window:

Lastly, to illustrate the use of traits in anonymous classes, copy the chap_04_oop_trait_
multiple.php file mentioned in the previous recipe to a new file, chap_04_oop_trait_
anonymous_class.php. Remove the definition of the Test class, and replace it with an
anonymous class:

$a = new class() {
 use IdTrait, NameTrait {
 NameTrait::setKeyinsteadofIdTrait;
 IdTrait::setKey as setKeyDate;
 }
};

Remove this line:

$a = new Test();

Working with PHP Object-Oriented Programming

128

When you run the code, you will see exactly the same output as shown in the preceding
screenshot, except that the class reference will be anonymous:

129

Interacting with
a Database

In this chapter, we will cover the following topics:

ff Using PDO to connect to a database

ff Building an OOP SQL query builder

ff Handling pagination

ff Defining entities to match database tables

ff Tying entity classes to RDBMS queries

ff Embedding secondary lookups into query results

ff Implementing jQuery DataTables PHP lookups

Introduction
In this chapter, we will cover a series of database connectivity recipes that take advantage of
the PHP Data Objects (PDO) extension. Common programming problems such as Structured
Query Language (SQL) generation, pagination, and tying objects to database tables, will be
addressed. Finally, at the end, we will present code that processes secondary lookups in the
form of embedded anonymous functions, and using jQuery DataTables to make AJAX requests.

5

Interacting with a Database

130

Using PDO to connect to a database
PDO is a highly performant and actively maintained database extension that has a unique
advantage over vendor-specific extensions. It has a common Application Programming
Interface (API) that is compatible with almost a dozen different Relational Database
Management Systems (RDBMS). Learning how to use this extension will save you hours
of time trying to master the command subsets of the equivalent individual vendor-specific
database extensions.

PDO is subdivided into four main classes, as summarized in the following table:

Class Functionality
PDO Maintains the actual connection to the database, and also

handles low-level functionality such as transaction support
PDOStatement Processes results
PDOException Database-specific exceptions
PDODriver Communicates with the actual vendor-specific database

How to do it…
1.	 Set up the database connection by creating a PDO instance.

2.	 You need to construct a Data Source Name (DSN). The information contained in the
DSN varies according to the database driver used. As an example, here is a DSN used
to connect to a MySQL database:
$params = [
 'host' => 'localhost',
 'user' => 'test',
 'pwd' => 'password',
 'db' => 'php7cookbook'
];

try {
 $dsn = sprintf('mysql:host=%s;dbname=%s',
 $params['host'], $params['db']);
 $pdo = new PDO($dsn, $params['user'], $params['pwd']);
} catch (PDOException $e) {
 echo $e->getMessage();
} catch (Throwable $e) {
 echo $e->getMessage();
}

Chapter 5

131

3.	 On the other hand, SQlite, a simpler extension, only requires the following command:
$params = [
 'db' => __DIR__ . '/../data/db/php7cookbook.db.sqlite'
];
$dsn = sprintf('sqlite:' . $params['db']);

4.	 PostgreSQL, on the other hand, includes the username and password directly in the
DSN:
$params = [
 'host' => 'localhost',
 'user' => 'test',
 'pwd' => 'password',
 'db' => 'php7cookbook'
];
$dsn = sprintf('pgsql:host=%s;dbname=%s;user=%s;password=%s',
 $params['host'],
 $params['db'],
 $params['user'],
 $params['pwd']);

5.	 The DSN could also include server-specific directives, such as unix_socket, as
shown in the following example:
$params = [
 'host' => 'localhost',
 'user' => 'test',
 'pwd' => 'password',
 'db' => 'php7cookbook',
 'sock' => '/var/run/mysqld/mysqld.sock'
];

try {
 $dsn = sprintf('mysql:host=%s;dbname=%s;unix_socket=%s',
 $params['host'], $params['db'], $params['sock']);
 $opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
 $pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);
} catch (PDOException $e) {
 echo $e->getMessage();
} catch (Throwable $e) {
 echo $e->getMessage();
}

Interacting with a Database

132

Best practice
Wrap the statement that creates the PDO instance in a try {} catch
{} block. Catch a PDOException for database-specific information in
case of failure. Catch Throwable for errors or any other exceptions. Set
the PDO error mode to PDO::ERRMODE_EXCEPTION for best results. See
step 8 for more details about error modes.
In PHP 5, if the PDO object cannot be constructed (for example, when
invalid parameters are used), the instance is assigned a value of NULL. In
PHP 7, an Exception is thrown. If you wrap the construction of the PDO
object in a try {} catch {} block, and the PDO::ATTR_ERRMODE is
set to PDO::ERRMODE_EXCEPTION, you can catch and log such errors
without having to test for NULL.

6.	 Send an SQL command using PDO::query(). A PDOStatement instance is
returned, against which you can fetch results. In this example, we are looking for the
first 20 customers sorted by ID:
$stmt = $pdo->query(
'SELECT * FROM customer ORDER BY id LIMIT 20');

PDO also provides a convenience method, PDO::exec(), which does
not return a result iteration, just the number of rows affected. This method
is best used for administrative operations such as ALTER TABLE, DROP
TABLE, and so on.

7.	 Iterate through the PDOStatement instance to process results. Set the fetch mode
to either PDO::FETCH_NUM or PDO::FETCH_ASSOC to return results in the form of
a numeric or associative array. In this example we use a while() loop to process
results. When the last result has been fetched, the result is a boolean FALSE, ending
the loop:
while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 printf('%4d | %20s | %5s' . PHP_EOL, $row['id'],
 $row['name'], $row['level']);
}

PDO fetch operations involve a cursor that defines the direction
(that is, forward or reverse) of the iteration. The second argument to
PDOStatement::fetch() can be any of the PDO::FETCH_ORI_*
constants. Cursor orientations include prior, first, last, absolute, and
relative. The default cursor orientation is PDO::FETCH_ORI_NEXT.

Chapter 5

133

8.	 Set the fetch mode to PDO::FETCH_OBJ to return results as a stdClass instance.
Here you will note that the while() loop takes advantage of the fetch mode,
PDO::FETCH_OBJ. Notice that the printf() statement refers to object properties,
in contrast with the preceding example, which references array elements:
while ($row = $stmt->fetch(PDO::FETCH_OBJ)) {
 printf('%4d | %20s | %5s' . PHP_EOL,
 $row->id, $row->name, $row->level);
}

9.	 If you want to create an instance of a specific class while processing a query, set
the fetch mode to PDO::FETCH_CLASS. You must also have the class definition
available, and PDO::query() should set the class name. As you can see in the
following code snippet, we have defined a class called Customer, with public
properties $id, $name, and $level. Properties need to be public for the fetch
injection to work properly:
class Customer
{
 public $id;
 public $name;
 public $level;
}

$stmt = $pdo->query($sql, PDO::FETCH_CLASS, 'Customer');

10.	 When fetching objects, a simpler alternative to the technique shown in step 5 is to
use PDOStatement::fetchObject():
while ($row = $stmt->fetchObject('Customer')) {
 printf('%4d | %20s | %5s' . PHP_EOL,
 $row->id, $row->name, $row->level);
}

11.	 You could also use PDO::FETCH_INTO, which is essentially the same as
PDO::FETCH_CLASS, but you need an active object instance instead of a class
reference. Each iteration through the loop re-populates the same object instance with
the current information set. This example assumes the same class Customer as in
step 5, with the same database parameters and PDO connections as defined in step
1:
$cust = new Customer();
while ($stmt->fetch(PDO::FETCH_INTO)) {
 printf('%4d | %20s | %5s' . PHP_EOL,
 $cust->id, $cust->name, $cust->level);
}

Interacting with a Database

134

12.	 If you do not specify an error mode, the default PDO error mode is PDO::ERRMODE_
SILENT. You can set the error mode using the PDO::ATTR_ERRMODE key, and either
the PDO::ERRMODE_WARNING or the PDO::ERRMODE_EXCEPTION value. The error
mode can be specified as the fourth argument to the PDO constructor in the form
of an associative array. Alternatively, you can use PDO::setAttribute() on an
existing instance.

13.	 Let us assume you have the following DSN and SQL (before you start thinking that
this is a new form of SQL, please be assured: this SQL statement will not work!):
$params = [
 'host' => 'localhost',
 'user' => 'test',
 'pwd' => 'password',
 'db' => 'php7cookbook'
];
$dsn = sprintf('mysql:host=%s;dbname=%s', $params['host'],
$params['db']);
$sql = 'THIS SQL STATEMENT WILL NOT WORK';

14.	 If you then formulate your PDO connection using the default error mode, the only clue
that something is wrong is that instead of producing a PDOStatement instance, the
PDO::query() will return a boolean FALSE:
$pdo1 = new PDO($dsn, $params['user'], $params['pwd']);
$stmt = $pdo1->query($sql);
$row = ($stmt) ? $stmt->fetch(PDO::FETCH_ASSOC) : 'No Good';

15.	 The next example shows setting the error mode to WARNING using the constructor
approach:
$pdo2 = new PDO(
 $dsn,
 $params['user'],
 $params['pwd'],
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_WARNING]);

16.	 If you need full separation of the prepare and execute phases, use
PDO::prepare() and PDOStatement::execute() instead. The statement
is then sent to the database server to be pre-compiled. You can then execute the
statement as many times as is warranted, most likely in a loop.

17.	 The first argument to PDO::prepare() can be an SQL statement with
placeholders in place of actual values. An array of values can then be supplied to
PDOStatement::execute(). PDO automatically provides database quoting, which
helps safeguard against SQL Injection.

Chapter 5

135

Best practice
Any application in which external input (that is, from a form posting) is
combined with an SQL statement is subject to an SQL injection attack.
All external input must first be properly filtered, validated, and otherwise
sanitized. Do not put external input directly into the SQL statement.
Instead, use placeholders, and provide the actual (sanitized) values
during the execution phase.

18.	 To iterate through the results in reverse, you can change the orientation of the
scrollable cursor. Alternatively, and probably more easily, just reverse the ORDER BY
from ASC to DESC. This line of code sets up a PDOStatement object requesting a
scrollable cursor:
$dsn = sprintf('pgsql:charset=UTF8;host=%s;dbname=%s',
$params['host'], $params['db']);
$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);
$sql = 'SELECT * FROM customer '
 . 'WHERE balance > :min AND balance < :max '
 . 'ORDER BY id LIMIT 20';
$stmt = $pdo->prepare($sql, [PDO::ATTR_CURSOR =>
 PDO::CURSOR_SCROLL]);

19.	 You also need to specify cursor instructions during the fetch operation. This example
gets the last row in the result set, and then scrolls backwards:
$stmt->execute(['min' => $min, 'max' => $max]);
$row = $stmt->fetch(PDO::FETCH_ASSOC, PDO::FETCH_ORI_LAST);
do {
 printf('%4d | %20s | %5s | %8.2f' . PHP_EOL,
 $row['id'],
 $row['name'],
 $row['level'],
 $row['balance']);
} while ($row = $stmt->fetch(PDO::FETCH_ASSOC,
 PDO::FETCH_ORI_PRIOR));

20.	 Neither MySQL nor SQLite support scrollable cursors! To achieve the same results, try
the following modifications to the preceding code:
$dsn = sprintf('mysql:charset=UTF8;host=%s;dbname=%s',
$params['host'], $params['db']);
$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);
$sql = 'SELECT * FROM customer '
 . 'WHERE balance > :min AND balance < :max '

Interacting with a Database

136

 . 'ORDER BY id DESC
 . 'LIMIT 20';
$stmt = $pdo->prepare($sql);
while ($row = $stmt->fetch(PDO::FETCH_ASSOC));
printf('%4d | %20s | %5s | %8.2f' . PHP_EOL,
 $row['id'],
 $row['name'],
 $row['level'],
 $row['balance']);
}

21.	 PDO provides support for transactions. Borrowing the code from step 9, we can wrap
the INSERT series of commands into a transactional block:
try {
 $pdo->beginTransaction();
 $sql = "INSERT INTO customer ('"
 . implode("','", $fields) . "') VALUES (?,?,?,?,?,?)";
 $stmt = $pdo->prepare($sql);
 foreach ($data as $row) $stmt->execute($row);
 $pdo->commit();
} catch (PDOException $e) {
 error_log($e->getMessage());
 $pdo->rollBack();
}

22.	 Finally, to keep everything modular and re-usable, we can wrap the PDO connection
into a separate class Application\Database\Connection. Here, we build
a connection through the constructor. Alternatively, there is a static factory()
method that lets us generate a series of PDO instances:
namespace Application\Database;
use Exception;
use PDO;
class Connection
{
 const ERROR_UNABLE = 'ERROR: no database connection';
 public $pdo;
 public function __construct(array $config)
 {
 if (!isset($config['driver'])) {
 $message = __METHOD__ . ' : '
 . self::ERROR_UNABLE . PHP_EOL;
 throw new Exception($message);
 }
 $dsn = $this->makeDsn($config);

Chapter 5

137

 try {
 $this->pdo = new PDO(
 $dsn,
 $config['user'],
 $config['password'],
 [PDO::ATTR_ERRMODE => $config['errmode']]);
 return TRUE;
 } catch (PDOException $e) {
 error_log($e->getMessage());
 return FALSE;
 }
 }

 public static function factory(
 $driver, $dbname, $host, $user,
 $pwd, array $options = array())
 {
 $dsn = $this->makeDsn($config);

 try {
 return new PDO($dsn, $user, $pwd, $options);
 } catch (PDOException $e) {
 error_log($e->getMessage);
 }
 }

23.	 An important component of this Connection class is a generic method that can be
used to construct a DSN. All we need for this to work is to establish the PDODriver
as a prefix, followed by ":". After that, we simply append key/value pairs from our
configuration array. Each key/value pair is separated by a semi-colon. We also need
to strip off the trailing semi-colon, using substr() with a negative limit for that
purpose:

 public function makeDsn($config)
 {
 $dsn = $config['driver'] . ':';
 unset($config['driver']);
 foreach ($config as $key => $value) {
 $dsn .= $key . '=' . $value . ';';
 }
 return substr($dsn, 0, -1);
 }
}

Interacting with a Database

138

How it works...
First of all, you can copy the initial connection code from step 1 into a chap_05_pdo_
connect_mysql.php file. For the purposes of this illustration, we will assume you have
created a MySQL database called php7cookbook, with a username of cook and a password
of book. Next, we send a simple SQL statement to the database using the PDO::query()
method. Finally, we use the resulting statement object to fetch results in the form of an
associative array. Don't forget to wrap your code in a try {} catch {} block:

<?php
$params = [
 'host' => 'localhost',
 'user' => 'test',
 'pwd' => 'password',
 'db' => 'php7cookbook'
];
try {
 $dsn = sprintf('mysql:charset=UTF8;host=%s;dbname=%s',
 $params['host'], $params['db']);
 $pdo = new PDO($dsn, $params['user'], $params['pwd']);
 $stmt = $pdo->query(
 'SELECT * FROM customer ORDER BY id LIMIT 20');
 printf('%4s | %20s | %5s | %7s' . PHP_EOL,
 'ID', 'NAME', 'LEVEL', 'BALANCE');
 printf('%4s | %20s | %5s | %7s' . PHP_EOL,
 '----', str_repeat('-', 20), '-----', '-------');
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,
 $row['id'], $row['name'], $row['level'], $row['balance']);
 }
} catch (PDOException $e) {
 error_log($e->getMessage());
} catch (Throwable $e) {
 error_log($e->getMessage());
}

Chapter 5

139

Here is the resulting output:

Add the option to the PDO constructor, which sets the error mode to EXCEPTION. Now alter
the SQL statement and observe the resulting error message:

$opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
$pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);
$stmt = $pdo->query('THIS SQL STATEMENT WILL NOT WORK');

You will observe something like this:

Placeholders can be named or positional. Named placeholders are preceded by a colon (:)
in the prepared SQL statement, and are references as keys in an associative array provided to
execute(). Positional placeholders are represented as question marks (?) in the prepared
SQL statement.

Interacting with a Database

140

In the following example, named placeholders are used to represent values in a WHERE
clause:

try {
 $dsn = sprintf('mysql:host=%s;dbname=%s',
 $params['host'], $params['db']);
 $pdo = new PDO($dsn,
 $params['user'],
 $params['pwd'],
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);
 $sql = 'SELECT * FROM customer '
 . 'WHERE balance < :val AND level = :level '
 . 'ORDER BY id LIMIT 20'; echo $sql . PHP_EOL;
 $stmt = $pdo->prepare($sql);
 $stmt->execute(['val' => 100, 'level' => 'BEG']);
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 printf('%4d | %20s | %5s | %5.2f' . PHP_EOL,
 	 $row['id'], $row['name'], $row['level'], $row['balance']);
 }
} catch (PDOException $e) {
 echo $e->getMessage();
} catch (Throwable $e) {
 echo $e->getMessage();
}

This example shows using positional placeholders in an INSERT operation. Notice that the
data to be inserted as the fourth customer includes a potential SQL injection attack. You will
also notice that some awareness of the SQL syntax for the database being used is required. In
this case, MySQL column names are quoted using back-ticks ('):

$fields = ['name', 'balance', 'email',
 'password', 'status', 'level'];
$data = [
 ['Saleen',0,'saleen@test.com', 'password',0,'BEG'],
 ['Lada',55.55,'lada@test.com', 'password',0,'INT'],
 ['Tonsoi',999.99,'tongsoi@test.com','password',1,'ADV'],
 ['SQL Injection',0.00,'bad','bad',1,
 'BEG\';DELETE FROM customer;--'],
];

try {
 $dsn = sprintf('mysql:host=%s;dbname=%s',
 $params['host'], $params['db']);
 $pdo = new PDO($dsn,
 $params['user'],

Chapter 5

141

 $params['pwd'],
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);
 $sql = "INSERT INTO customer ('"
 . implode("','", $fields)
 . "') VALUES (?,?,?,?,?,?)";
 $stmt = $pdo->prepare($sql);
 foreach ($data as $row) $stmt->execute($row);
} catch (PDOException $e) {
 echo $e->getMessage();
} catch (Throwable $e) {
 echo $e->getMessage();
}

To test the use of a prepared statement with named parameters, modify the SQL statement
to add a WHERE clause that checks for customers with a balance less than a certain amount,
and a level equal to either BEG, INT, or ADV (that is, beginning, intermediate, or advanced).
Instead of using PDO::query(), use PDO::prepare(). Before fetching results, you must
then perform PDOStatement::execute(), supplying the values for balance and level:

$sql = 'SELECT * FROM customer '
 . 'WHERE balance < :val AND level = :level '
 . 'ORDER BY id LIMIT 20';
$stmt = $pdo->prepare($sql);
$stmt->execute(['val' => 100, 'level' => 'BEG']);

Here is the resulting output:

Instead of providing parameters when calling PDOStatement::execute(), you could
alternatively bind parameters. This allows you to assign variables to placeholders. At the time
of execution, the current value of the variable is used.

Interacting with a Database

142

In this example, we bind the variables $min, $max, and $level to the prepared statement:

$min = 0;
$max = 0;
$level = '';

try {
 $dsn = sprintf('mysql:host=%s;dbname=%s', $params['host'],
 $params['db']);
 $opts = [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION];
 $pdo = new PDO($dsn, $params['user'], $params['pwd'], $opts);
 $sql = 'SELECT * FROM customer '
 . 'WHERE balance > :min '
 . 'AND balance < :max AND level = :level '
 . 'ORDER BY id LIMIT 20';
 $stmt = $pdo->prepare($sql);
 $stmt->bindParam('min', $min);
 $stmt->bindParam('max', $max);
 $stmt->bindParam('level', $level);

 $min = 5000;
 $max = 10000;
 $level = 'ADV';
 $stmt->execute();
 showResults($stmt, $min, $max, $level);

 $min = 0;
 $max = 100;
 $level = 'BEG';
 $stmt->execute();
 showResults($stmt, $min, $max, $level);

} catch (PDOException $e) {
 echo $e->getMessage();
} catch (Throwable $e) {
 echo $e->getMessage();
}

When the values of these variables change, the next execution will reflect the modified
criteria.

Best practice
Use PDO::query() for one-time database commands. Use
PDO::prepare() and PDOStatement::execute() when you
need to process the same statement multiple times but using different
values.

Chapter 5

143

See also
For information on the syntax and unique behavior associated with different vendor-specific
PDO drivers, have a look this article:

ff http://php.net/manual/en/pdo.drivers.php

For a summary of PDO predefined constants, including fetch modes, cursor orientation, and
attributes, see the following article:

ff http://php.net/manual/en/pdo.constants.php

Building an OOP SQL query builder
PHP 7 implements something called a context sensitive lexer. What this means is that words
that are normally reserved can be used if the context allows. Thus, when building an object-
oriented SQL builder, we can get away with using methods named and, or, not, and so on.

How to do it…
1.	 We define a Application\Database\Finder class. In the class, we define

methods that match our favorite SQL operations:
namespace Application\Database;
class Finder
{
 public static $sql = '';
 public static $instance = NULL;
 public static $prefix = '';
 public static $where = array();
 public static $control = ['', ''];

 // $a == name of table
 // $cols = column names
 public static function select($a, $cols = NULL)
 {
 self::$instance = new Finder();
 if ($cols) {
 self::$prefix = 'SELECT ' . $cols . ' FROM ' . $a;
 } else {
 self::$prefix = 'SELECT * FROM ' . $a;
 }
 return self::$instance;
 }

http://php.net/manual/en/pdo.drivers.php
http://php.net/manual/en/pdo.constants.php

Interacting with a Database

144

 public static function where($a = NULL)
 {
 self::$where[0] = ' WHERE ' . $a;
 return self::$instance;
 }

 public static function like($a, $b)
 {
 self::$where[] = trim($a . ' LIKE ' . $b);
 return self::$instance;
 }

 public static function and($a = NULL)
 {
 self::$where[] = trim('AND ' . $a);
 return self::$instance;
 }

 public static function or($a = NULL)
 {
 self::$where[] = trim('OR ' . $a);
 return self::$instance;
 }

 public static function in(array $a)
 {
 self::$where[] = 'IN (' . implode(',', $a) . ')';
 return self::$instance;
 }

 public static function not($a = NULL)
 {
 self::$where[] = trim('NOT ' . $a);
 return self::$instance;
 }

 public static function limit($limit)
 {
 self::$control[0] = 'LIMIT ' . $limit;
 return self::$instance;
 }

 public static function offset($offset)
 {

Chapter 5

145

 self::$control[1] = 'OFFSET ' . $offset;
 return self::$instance;
 }

 public static function getSql()
 {
 self::$sql = self::$prefix
 . implode(' ', self::$where)
 . ' '
 . self::$control[0]
 . ' '
 . self::$control[1];
 preg_replace('/ /', ' ', self::$sql);
 return trim(self::$sql);
 }
}

2.	 Each function used to generate an SQL fragment returns the same property,
$instance. This allows us to represent the code using a fluent interface, such as this:

$sql = Finder::select('project')->where('priority > 9') … etc.

How it works…
Copy the code defined precedingly into a Finder.php file in the Application\Database
folder. You can then create a chap_05_oop_query_builder.php calling program, which
initializes the autoloader defined in Chapter 1, Building a Foundation. You can then run
Finder::select() to generate an object from which the SQL string can be rendered:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Finder;

$sql = Finder::select('project')
 ->where()
 ->like('name', '%secret%')
 ->and('priority > 9')
 ->or('code')->in(['4', '5', '7'])
 ->and()->not('created_at')
 ->limit(10)
 ->offset(20);

echo Finder::getSql();

Interacting with a Database

146

Here is the result of the precding code:

See also
For more information on the context-sensitive lexer, have a look at this article:

https://wiki.php.net/rfc/context_sensitive_lexer

Handling pagination
Pagination involves providing a limited subset of the results of a database query. This is
usually done for display purposes, but could easily apply to other situations. At first glance,
it would seem the LimitIterator class is ideally suited for the purposes of pagination.
In cases where the potential result set could be massive; however, LimitIterator is not
such an ideal candidate, as you would need to supply the entire result set as an inner iterator,
which would most likely exceed memory limitations. The second and third arguments to
the LimitIterator class constructor are offset and count. This suggests the pagination
solution we will adopt, which is native to SQL: adding LIMIT and OFFSET clauses to a given
SQL statement.

How to do it…
1.	 First, we create a class called Application\Database\Paginate to hold the

pagination logic. We add properties to represent values associated with pagination,
$sql, $page, and $linesPerPage:
namespace Application\Database;

class Paginate
{

 const DEFAULT_LIMIT = 20;
 const DEFAULT_OFFSET = 0;

https://wiki.php.net/rfc/context_sensitive_lexer

Chapter 5

147

 protected $sql;
 protected $page;
 protected $linesPerPage;

}

2.	 Next, we define a __construct() method that accepts a base SQL statement, the
current page number, and the number of lines per page as arguments. We then need
to refactor the SQL string modifying or adding the LIMIT and OFFSET clauses.

3.	 In the constructor, we need to calculate the offset using the current page number and
the number of lines per page. We also need to check to see if LIMIT and OFFSET are
already present in the SQL statement. Finally, we need to revise the statement using
lines per page as our LIMIT with the recalculated OFFSET:
public function __construct($sql, $page, $linesPerPage)
{
 $offset = $page * $linesPerPage;
 switch (TRUE) {
 case (stripos($sql, 'LIMIT') && strpos($sql, 'OFFSET')) :
 // no action needed
 break;
 case (stripos($sql, 'LIMIT')) :
 $sql .= ' LIMIT ' . self::DEFAULT_LIMIT;
 break;
 case (stripos($sql, 'OFFSET')) :
 $sql .= ' OFFSET ' . self::DEFAULT_OFFSET;
 break;
 default :
 $sql .= ' LIMIT ' . self::DEFAULT_LIMIT;
 $sql .= ' OFFSET ' . self::DEFAULT_OFFSET;
 break;
 }
 $this->sql = preg_replace('/LIMIT \d+.*OFFSET \d+/Ui',
 'LIMIT ' . $linesPerPage . ' OFFSET ' . $offset,
 $sql);
}

4.	 We are now ready to execute the query using the Application\Database\
Connection class discussed in the first recipe.

5.	 In our new pagination class, we add a paginate() method, which takes a
Connection instance as an argument. We also need the PDO fetch mode, and
optional prepared statement parameters:
use PDOException;
public function paginate(
 Connection $connection,

Interacting with a Database

148

 $fetchMode,
 $params = array())
 {
 try {
 $stmt = $connection->pdo->prepare($this->sql);
 if (!$stmt) return FALSE;
 if ($params) {
 $stmt->execute($params);
 } else {
 $stmt->execute();
 }
 while ($result = $stmt->fetch($fetchMode)) yield $result;
 } catch (PDOException $e) {
 error_log($e->getMessage());
 return FALSE;
 } catch (Throwable $e) {
 error_log($e->getMessage());
 return FALSE;
 }
}

6.	 It might not be a bad idea to provide support for the query builder class mentioned in
the previous recipe. This will make updating LIMIT and OFFSET much easier. All we
need to do to provide support for Application\Database\Finder is to use the
class and modify the __construct() method to check to see if the incoming SQL is
an instance of this class:
 if ($sql instanceof Finder) {
 $sql->limit($linesPerPage);
 $sql->offset($offset);
 $this->sql = $sql::getSql();
 } elseif (is_string($sql)) {
 switch (TRUE) {
 case (stripos($sql, 'LIMIT')
 && strpos($sql, 'OFFSET')) :
 // remaining code as shown in bullet #3 above
 }
 }

7.	 Now all that remains to be done is to add a getSql() method in case we need to
confirm that the SQL statement was correctly formed:

public function getSql()
{
 return $this->sql;
}

Chapter 5

149

How it works…
Copy the preceding code into a Paginate.php file in the Application/Database folder.
You can then create a chap_05_pagination.php calling program, which initializes the
autoloader defined in Chapter 1, Building a Foundation:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
define('LINES_PER_PAGE', 10);
define('DEFAULT_BALANCE', 1000);
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Next, use the Application\Database\Finder, Connection, and Paginate classes,
create an instance of Application\Database\Connection, and use Finder to generate
SQL:

use Application\Database\ { Finder, Connection, Paginate};
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$sql = Finder::select('customer')->where('balance < :bal');

We can now get the page number and balance from $_GET parameters, and create the
Paginate object, ending the PHP block:

$page = (int) ($_GET['page'] ?? 0);
$bal = (float) ($_GET['balance'] ?? DEFAULT_BALANCE);
$paginate = new Paginate($sql::getSql(), $page, LINES_PER_PAGE);
?>

In the output portion of the script, we simply iterate through the pagination using a simple
foreach() loop:

<h3><?= $paginate->getSql(); ?></h3>	
<hr>
<pre>
<?php
printf('%4s | %20s | %5s | %7s' . PHP_EOL,
 'ID', 'NAME', 'LEVEL', 'BALANCE');
printf('%4s | %20s | %5s | %7s' . PHP_EOL,
 '----', str_repeat('-', 20), '-----', '-------');
foreach ($paginate->paginate($conn, PDO::FETCH_ASSOC,
 ['bal' => $bal]) as $row) {
 printf('%4d | %20s | %5s | %7.2f' . PHP_EOL,
 $row['id'],$row['name'],$row['level'],$row['balance']);
}
printf('%4s | %20s | %5s | %7s' . PHP_EOL,

Interacting with a Database

150

 '----', str_repeat('-', 20), '-----', '-------');
?>
<a href="?page=<?= $page - 1; ?>&balance=<?= $bal ?>">
<< Prev
<a href="?page=<?= $page + 1; ?>&balance=<?= $bal ?>">
Next >>
</pre>

Here is page 3 of the output, where the balance is less than 1,000:

See also
For more information on the LimitIterator class, refer to this article:

ff http://php.net/manual/en/class.limititerator.php

Defining entities to match database tables
A very common practice among PHP developers is to create classes that represent database
tables. Such classes are often referred to as entity classes, and form the core of the domain
model software design pattern.

How to do it…
1.	 First of all, we will establish some common features of a series of entity classes.

These might include common properties and common methods. We will put these
into a Application\Entity\Base class. All future entity classes will then extend
Base.

http://php.net/manual/en/class.limititerator.php

Chapter 5

151

2.	 For the purposes of this illustration, let's assume all entities will have two properties
in common: $mapping (discussed later), and $id (with its corresponding getter and
setter):
namespace Application\Entity;

class Base
{

 protected $id = 0;
 protected $mapping = ['id' => 'id'];

 public function getId() : int
 {
 return $this->id;
 }

 public function setId($id)
 {
 $this->id = (int) $id;
 }
}

3.	 It's not a bad idea to define a arrayToEntity() method, which converts an array to
an instance of the entity class, and vice versa (entityToArray()). These methods
implement a process often referred to as hydration. As these methods should be
generic, they are best placed in the Base class.

4.	 In the following methods, the $mapping property is used to translate between
database column names and object property names. arrayToEntity() populates
values of this object instance from an array. We can define this method as static in
case we need to call it outside of an active instance:
public static function arrayToEntity($data, Base $instance)
{
 if ($data && is_array($data)) {
 foreach ($instance->mapping as $dbColumn => $propertyName) {
 $method = 'set' . ucfirst($propertyName);
 $instance->$method($data[$dbColumn]);
 }
 return $instance;
 }
 return FALSE;
}

Interacting with a Database

152

5.	 The entityToArray() produces an array from current instance property values:
public function entityToArray()
{
 $data = array();
 foreach ($this->mapping as $dbColumn => $propertyName) {
 $method = 'get' . ucfirst($propertyName);
 $data[$dbColumn] = $this->$method() ?? NULL;
 }
 return $data;
}

6.	 To build the specific entity, you need to have the structure of the database table you
plan to model at hand. Create properties that map to the database columns. The
initial values assigned should reflect the ultimate data-type of the database column.

7.	 In this example we'll use the customer table. Here is the CREATE statement from a
MySQL data dump, which illustrates its data structure:
CREATE TABLE 'customer' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'name' varchar(256) CHARACTER SET latin1 COLLATE
 latin1_general_cs NOT NULL,
 'balance' decimal(10,2) NOT NULL,
 'email' varchar(250) NOT NULL,
 'password' char(16) NOT NULL,
 'status' int(10) unsigned NOT NULL DEFAULT '0',
 'security_question' varchar(250) DEFAULT NULL,
 'confirm_code' varchar(32) DEFAULT NULL,
 'profile_id' int(11) DEFAULT NULL,
 'level' char(3) NOT NULL,
 PRIMARY KEY ('id'),
 UNIQUE KEY 'UNIQ_81398E09E7927C74' ('email')
);

8.	 We are now in a position to flesh out the class properties. This is also a good place
to identify the corresponding table. In this case, we will use a TABLE_NAME class
constant:
namespace Application\Entity;

class Customer extends Base
{
 const TABLE_NAME = 'customer';
 protected $name = '';
 protected $balance = 0.0;
 protected $email = '';
 protected $password = '';

Chapter 5

153

 protected $status = '';
 protected $securityQuestion = '';
 protected $confirmCode = '';
 protected $profileId = 0;
 protected $level = '';
}

9.	 It is considered a best practice to define the properties as protected. In order to
access these properties, you will need to design public methods that get and set
the properties. Here is a good place to put to use the PHP 7 ability to data-type to the
return value.

10.	 In the following block of code, we have defined getters and setters for $name and
$balance. You can imagine how the remainder of these methods will be defined:
 public function getName() : string
 {
 return $this->name;
 }
 public function setName($name)
 {
 $this->name = $name;
 }
 public function getBalance() : float
 {
 return $this->balance;
 }
 public function setBalance($balance)
 {
 $this->balance = (float) $balance;
 }
}

It is not a good idea to data type check the incoming values on the
setters. The reason is that the return values from a RDBMS database
query will all be a string data type.

11.	 If the property names do not exactly match the corresponding database column, you
should consider creating a mapping property, an array of key/value pairs where the
key represents the database column name and the value the property name.

Interacting with a Database

154

12.	 You will note that three properties, $securityQuestion, $confirmCode, and
$profileId, do not correspond to their equivalent column names, security_
question, confirm_code, and profile_id. The $mapping property will ensure
that the appropriate translation takes place:

protected $mapping = [
 'id' => 'id',
 'name' => 'name',
 'balance' => 'balance',
 'email' => 'email',
 'password' => 'password',
 'status' => 'status',
 'security_question' => 'securityQuestion',
 'confirm_code' => 'confirmCode',
 'profile_id' => 'profileId',
 'level' => 'level'
];

How it works…
Copy the code from steps 2, 4, and 5 into a Base.php file in the Application/
Entity folder. Copy the code from steps 8 through 12 into a Customer.php file,
also in the Application/Entity folder. You will then need to create getters and
setters for the remaining properties not shown in step 10: email, password, status,
securityQuestion, confirmCode, profileId, and level.

You can then create a chap_05_matching_entity_to_table.php calling program,
which initializes the autoloader defined in Chapter 1, Building a Foundation, uses the
Application\Database\Connection, and the newly created Application\Entity\
Customer classes:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
use Application\Entity\Customer;

Next, get a database connection, and use the connection to acquire an associative array of
data for one customer at random:

$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$id = rand(1,79);
$stmt = $conn->pdo->prepare(
 'SELECT * FROM customer WHERE id = :id');
$stmt->execute(['id' => $id]);
$result = $stmt->fetch(PDO::FETCH_ASSOC);

Chapter 5

155

Finally, you can create a new Customer entity instance from the array and use var_dump()
to view the result:

$cust = Customer::arrayToEntity($result, new Customer());
var_dump($cust);

Here is the output of the preceding code:

See also
There are many good works that describe the domain model. Probably the most influential
is Patterns of Enterprise Application Architecture by Martin Fowler (see http://
martinfowler.com/books/eaa.html). There is also a nice study, also available as a free
download, entitled Domain Driven Design Quickly by InfoQ (see http://www.infoq.com/
minibooks/domain-driven-design-quickly).

Tying entity classes to RDBMS queries
Most commercially viable RDBMS systems evolved at a time when procedural programming
was at the fore. Imagine the RDBMS world as two dimensional, square, and procedurally
oriented. In contrast, entities could be thought of as round, three dimensional, and object
oriented. This gives you a picture of what we want to accomplish by tying the results of an
RDBMS query into an iteration of entity instances.

http://martinfowler.com/books/eaa.html
http://martinfowler.com/books/eaa.html
http://www.infoq.com/minibooks/domain-driven-design-quickly
http://www.infoq.com/minibooks/domain-driven-design-quickly

Interacting with a Database

156

The relational model, upon which modern RDBMS systems are based,
was first described by the mathematician Edgar F. Codd in 1969. The first
commercially viable systems evolved in the mid-to-late 1970s. So, in other
words, RDBMS technology is over 40 years old!

How to do it…
1.	 First of all, we need to design a class which will house our query logic. If you are

following the Domain Model, this class might be called a repository. Alternatively, to
keep things simple and generic, we could simply call the new class Application\
Database\CustomerService. The class will accept an Application\
Database\Connection instance as an argument:
namespace Application\Database;

use Application\Entity\Customer;

class CustomerService
{

 protected $connection;

 public function __construct(Connection $connection)
 {
 $this->connection = $connection;
 }

}

2.	 Now we will define a fetchById() method, which takes a customer ID as an
argument, and returns a single Application\Entity\Customer instance or
boolean FALSE on failure. At first glance, it would seem a no-brainer to simply use
PDOStatement::fetchObject() and specify the entity class as an argument:
public function fetchById($id)
{
 $stmt = $this->connection->pdo
 ->prepare(Finder::select('customer')
 ->where('id = :id')::getSql());
 $stmt->execute(['id' => (int) $id]);
 return $stmt->fetchObject('Application\Entity\Customer');
}

Chapter 5

157

The danger here, however, is that fetchObject() actually populates
the properties (even if they are protected) before the constructor is called!
Accordingly, there is a danger that the constructor could accidentally
overwrite values. If you don't define a constructor, or if you can live with
this danger, we're done. Otherwise, it starts to get tougher to properly
implement the tie between RDBMS query and OOP results.

3.	 Another approach for the fetchById() method is to create the object instance first,
thereby running its constructor, and setting the fetch mode to PDO::FETCH_INTO,
as shown in the following example:
public function fetchById($id)
{
 $stmt = $this->connection->pdo
 ->prepare(Finder::select('customer')
 ->where('id = :id')::getSql());
 $stmt->execute(['id' => (int) $id]);
 $stmt->setFetchMode(PDO::FETCH_INTO, new Customer());
 return $stmt->fetch();
}

4.	 Here again, however, we encounter a problem: fetch(), unlike fetchObject(), is
not able to overwrite protected properties; the following error message is generated if
it tries. This means we will either have to define all properties as public, or consider
another approach.

Interacting with a Database

158

5.	 The last approach we will consider will be to fetch the results in the form of an array,
and manually hydrate the entity. Even though this approach is slightly more costly in
terms of performance, it allows any potential entity constructor to run properly, and
keeps properties safely defined as private or protected:
public function fetchById($id)
{
 $stmt = $this->connection->pdo
 ->prepare(Finder::select('customer')
 ->where('id = :id')::getSql());
 $stmt->execute(['id' => (int) $id]);
 return Customer::arrayToEntity(
 $stmt->fetch(PDO::FETCH_ASSOC));
}

6.	 To process a query that produces multiple results, all we need to do is to
produce an iteration of populated entity objects. In this example, we implement a
fetchByLevel() method that returns all customers for a given level, in the form of
Application\Entity\Customer instances:
public function fetchByLevel($level)
{
 $stmt = $this->connection->pdo->prepare(
 Finder::select('customer')
 ->where('level = :level')::getSql());
 $stmt->execute(['level' => $level]);
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 yield Customer::arrayToEntity($row, new Customer());
 }
}

7.	 The next method we wish to implement is save(). Before we can proceed, however,
some thought must be given to what value will be returned if an INSERT takes place.

8.	 Normally, we would return the newly completed entity class after an INSERT. There
is a convenient PDO::lastInsertId() method which, at first glance, would seem
to do the trick. Further reading of the documentation reveals, however, that not all
database extensions support this feature, and the ones that do are not consistent in
their implementation. Accordingly, it would be a good idea to have a unique column
other than $id that can be used to uniquely identify the new customer.

9.	 In this example we have chosen the email column, and thus need to implement a
fetchByEmail() service method:
public function fetchByEmail($email)
{
 $stmt = $this->connection->pdo->prepare(
 Finder::select('customer')

Chapter 5

159

 ->where('email = :email')::getSql());
 $stmt->execute(['email' => $email]);
 return Customer::arrayToEntity(
 $stmt->fetch(PDO::FETCH_ASSOC), new Customer());
}

10.	 Now we are ready to define the save() method. Rather than distinguish between
INSERT and UPDATE, we will architect this method to update if the ID already exists,
and otherwise do an insert.

11.	 First, we define a basic save() method, which accepts a Customer entity as an
argument, and uses fetchById() to determine if this entry already exists. If it
exists, we call an doUpdate() update method; otherwise, we call a doInsert()
insert method:
public function save(Customer $cust)
{
 // check to see if customer ID > 0 and exists
 if ($cust->getId() && $this->fetchById($cust->getId())) {
 return $this->doUpdate($cust);
 } else {
 return $this->doInsert($cust);
 }
}

12.	 Next, we define doUpdate(), which pulls Customer entity object properties into an
array, builds an initial SQL statement, and calls a flush() method, which pushes
data to the database. We do not want the ID field updated, as it's the primary key.
Also we need to specify which row to update, which means appending a WHERE
clause:
protected function doUpdate($cust)
{
 // get properties in the form of an array
 $values = $cust->entityToArray();
 // build the SQL statement
 $update = 'UPDATE ' . $cust::TABLE_NAME;
 $where = ' WHERE id = ' . $cust->getId();
 // unset ID as we want do not want this to be updated
 unset($values['id']);
 return $this->flush($update, $values, $where);
}

Interacting with a Database

160

13.	 The doInsert() method is similar, except that the initial SQL needs to start with
INSERT INTO ... and the id array element needs to be unset. The reason for the
latter is that we want this property to be auto-generated by the database. If this is
successful, we use our newly defined fetchByEmail() method to look up the new
customer and return a completed instance:
protected function doInsert($cust)
{
 $values = $cust->entityToArray();
 $email = $cust->getEmail();
 unset($values['id']);
 $insert = 'INSERT INTO ' . $cust::TABLE_NAME . ' ';
 if ($this->flush($insert, $values)) {
 return $this->fetchByEmail($email);
 } else {
 return FALSE;
 }
}

14.	 Finally, we are in a position to define flush(), which does the actual preparation
and execution:
protected function flush($sql, $values, $where = '')
{
 $sql .= ' SET ';
 foreach ($values as $column => $value) {
 $sql .= $column . ' = :' . $column . ',';
 }
 // get rid of trailing ','
 $sql = substr($sql, 0, -1) . $where;
 $success = FALSE;
 try {
 $stmt = $this->connection->pdo->prepare($sql);
 $stmt->execute($values);
 $success = TRUE;
 } catch (PDOException $e) {
 error_log(__METHOD__ . ':' . __LINE__ . ':'
 . $e->getMessage());
 $success = FALSE;
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . __LINE__ . ':'
 . $e->getMessage());
 $success = FALSE;
 }
 return $success;
}

Chapter 5

161

15.	 To round off the discussion, we need to define a remove() method, which deletes a
customer from the database. Again, as with the save() method defined previously,
we use fetchById() to ensure the operation was successful:

public function remove(Customer $cust)
{
 $sql = 'DELETE FROM ' . $cust::TABLE_NAME . ' WHERE id = :id';
 $stmt = $this->connection->pdo->prepare($sql);
 $stmt->execute(['id' => $cust->getId()]);
 return ($this->fetchById($cust->getId())) ? FALSE : TRUE;
}

How it works…
Copy the code described in steps 1 to 5 into a CustomerService.php file in the
Application/Database folder. Define a chap_05_entity_to_query.php calling
program. Have the calling program initialize the autoloader, using the appropriate classes:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
use Application\Database\CustomerService;

You can now create an instance of the service, and fetch a single customer at random. The
service will then return a customer entity as a result:

// get service instance
$service = new CustomerService(new Connection(
 include __DIR__ . DB_CONFIG_FILE));

echo "\nSingle Result\n";
var_dump($service->fetchById(rand(1,79)));

Interacting with a Database

162

Here is the output:

Now copy the code shown in steps 6 to 15 into the service class. Add the data to insert to the
chap_05_entity_to_query.php calling program. We then generate a Customer entity
instance using this data:

// sample data
$data = [
 'name' => 'Doug Bierer',
 'balance' => 326.33,
 'email' => 'doug' . rand(0,999) . '@test.com',
 'password' => 'password',
 'status' => 1,
 'security_question' => 'Who\'s on first?',
 'confirm_code' => 12345,
 'level' => 'ADV'
];

// create new Customer
$cust = Customer::arrayToEntity($data, new Customer());

We can then examine the ID before and after the call to save():

echo "\nCustomer ID BEFORE Insert: {$cust->getId()}\n";
$cust = $service->save($cust);
echo "Customer ID AFTER Insert: {$cust->getId()}\n";

Chapter 5

163

Finally, we modify the balance, and again call save(), viewing the results:

echo "Customer Balance BEFORE Update: {$cust->getBalance()}\n";
$cust->setBalance(999.99);
$service->save($cust);
echo "Customer Balance AFTER Update: {$cust->getBalance()}\n";
var_dump($cust);

Here is the output from the calling program:

There's more…
For more information on the relational model, please refer to https://en.wikipedia.
org/wiki/Relational_model. For more information on RDBMS, please refer to
https://en.wikipedia.org/wiki/Relational_database_management_system.
For information on how PDOStatement::fetchObject() inserts property values even
before the constructor, have a look at the comment by "rasmus at mindplay dot dk" in the
php.net documentation reference on fetchObject() (http://php.net/manual/en/
pdostatement.fetchobject.php).

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Relational_database_management_system
http://php.net/manual/en/pdostatement.fetchobject.php
http://php.net/manual/en/pdostatement.fetchobject.php

Interacting with a Database

164

Embedding secondary lookups into query
results

On the road towards implementing relationships between entity classes, let us first take a look
at how we can embed the code needed to perform a secondary lookup. An example of such
a lookup is when displaying information on a customer, have the view logic perform a second
lookup that gets a list of purchases for that customer.

The advantage of this approach is that processing is deferred until
the actual view logic is executed. This will ultimately smooth the
performance curve, with the workload distributed more evenly
between the initial query for customer information, and the later query
for purchase information. Another benefit is that a massive JOIN is
avoided with its inherent redundant data.

How to do it…
1.	 First of all, define a function that finds a customer based on their ID. For the purposes

of this illustration, we will simply fetch an array using the fetch mode PDO::FETCH_
ASSOC. We will also continue to use the Application\Database\Connection
class discussed in Chapter 1, Building a Foundation:
function findCustomerById($id, Connection $conn)
{
 $stmt = $conn->pdo->query(
 'SELECT * FROM customer WHERE id = ' . (int) $id);
 $results = $stmt->fetch(PDO::FETCH_ASSOC);
 return $results;
}

2.	 Next, we analyze the purchases table to see how the customer and product tables
are linked. As you can see from the CREATE statement for this table, the customer_
id and product_id foreign keys form the relationships:
CREATE TABLE 'purchases' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'transaction' varchar(8) NOT NULL,
 'date' datetime NOT NULL,
 'quantity' int(10) unsigned NOT NULL,
 'sale_price' decimal(8,2) NOT NULL,
 'customer_id' int(11) DEFAULT NULL,
 'product_id' int(11) DEFAULT NULL,
 PRIMARY KEY ('id'),

Chapter 5

165

 KEY 'IDX_C3F3' ('customer_id'),
 KEY 'IDX_665A' ('product_id'),
 CONSTRAINT 'FK_665A' FOREIGN KEY ('product_id')
 REFERENCES 'products' ('id'),
 CONSTRAINT 'FK_C3F3' FOREIGN KEY ('customer_id')
 REFERENCES 'customer' ('id')
);

3.	 We now expand the original findCustomerById() function, defining the secondary
lookup in the form of an anonymous function, which can then be executed in a view
script. The anonymous function is assigned to the $results['purchases']
element:
function findCustomerById($id, Connection $conn)
{
 $stmt = $conn->pdo->query(
 'SELECT * FROM customer WHERE id = ' . (int) $id);
 $results = $stmt->fetch(PDO::FETCH_ASSOC);
 if ($results) {
 $results['purchases'] =
 // define secondary lookup
 function ($id, $conn) {
 $sql = 'SELECT * FROM purchases AS u '
 . 'JOIN products AS r '
 . 'ON u.product_id = r.id '
 . 'WHERE u.customer_id = :id '
 . 'ORDER BY u.date';
 $stmt = $conn->pdo->prepare($sql);
 $stmt->execute(['id' => $id]);
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 yield $row;
 }
 };
 }
 return $results;
}

4.	 Assuming we have successfully retrieved customer information into a $results
array, in the view logic, all we need to do is to loop through the return value of the
anonymous function. In this example, we retrieve customer information at random:
$result = findCustomerById(rand(1,79), $conn);

Interacting with a Database

166

5.	 In the view logic, we loop through the results returned by the secondary lookup.
The call to the embedded anonymous function is highlighted in the following code:

<table>
 <tr>
<th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th>
 </tr>
<?php
foreach ($result['purchases']($result['id'], $conn) as $purchase)
: ?>
 <tr>
 <td><?= $purchase['transaction'] ?></td>
 <td><?= $purchase['date'] ?></td>
 <td><?= $purchase['quantity'] ?></td>
 <td><?= $purchase['sale_price'] ?></td>
 <td><?= $purchase['title'] ?></td>
 </tr>
<?php endforeach; ?>
</table>

How it works…
Create a chap_05_secondary_lookups.php calling program and insert the code needed
to create an instance of Application\Database\Connection:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
include __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);

Next, add the findCustomerById()function shown in step 3. You can then pull information
for a random customer, ending the PHP part of the calling program:

function findCustomerById($id, Connection $conn)
{
 // code shown in bullet #3 above
}
$result = findCustomerById(rand(1,79), $conn);
?>

Chapter 5

167

For the view logic, you can display core customer information as shown in several of the
preceding recipes:

<h1><?= $result['name'] ?></h1>
<div class="row">
<div class="left">Balance</div>
<div class="right"><?= $result['balance']; ?></div>
</div>
<!-- etc.l -->

You can display information on purchases like so:

<table>
<tr><th>Transaction</th><th>Date</th><th>Qty</th>
<th>Price</th><th>Product</th></tr>
 <?php
 foreach ($result['purchases']($result['id'], $conn)
 as $purchase) : ?>
 <tr>
 <td><?= $purchase['transaction'] ?></td>
 <td><?= $purchase['date'] ?></td>
 <td><?= $purchase['quantity'] ?></td>
 <td><?= $purchase['sale_price'] ?></td>
 <td><?= $purchase['title'] ?></td>
 </tr>
<?php endforeach; ?>
</table>

The critical piece is that the secondary lookup is performed as part of the view logic by
calling the embedded anonymous function, $result['purchases']($result['id'],
$conn). Here is the output:

Interacting with a Database

168

Implementing jQuery DataTables PHP
lookups

Another approach to secondary lookups is to have the frontend generate the request. In this
recipe, we will make a slight modification to the secondary lookup code presented in the
preceding recipe, Embedding secondary lookups into QueryResults. In the previous recipe,
even though the view logic is performing the lookup, all processing is still done on the server.
When using jQuery DataTables, however, the secondary lookup is actually performed directly
by the client, in the form of an Asynchronous JavaScript and XML (AJAX) request issued by
the browser.

How to do it…
1.	 First we need to spin-off the secondary lookup logic (discussed in the recipe above)

into a separate PHP file. The purpose of this new script is to perform the secondary
lookup and return a JSON array.

2.	 The new script we will call chap_05_jquery_datatables_php_lookups_ajax.
php. It looks for a $_GET parameter, id. Notice that the SELECT statement is very
specific as to which columns are delivered. You will also note that the fetch mode has
been changed to PDO::FETCH_NUM. You might also notice that the last line takes
the results and assigns it to a data key in a JSON-encoded array.

It is extremely important when dealing with zero configuration jQuery
DataTables to only return the exact number of columns matching the
header.

$id = $_GET['id'] ?? 0;
sql = 'SELECT u.transaction,u.date,
 u.quantity,u.sale_price,r.title '
 . 'FROM purchases AS u '
 . 'JOIN products AS r '
 . 'ON u.product_id = r.id '
 . 'WHERE u.customer_id = :id';
$stmt = $conn->pdo->prepare($sql);
$stmt->execute(['id' => (int) $id]);
$results = array();
while ($row = $stmt->fetch(PDO::FETCH_NUM)) {
 $results[] = $row;
}
echo json_encode(['data' => $results]);

Chapter 5

169

3.	 Next, we need to modify the function that retrieves customer information by ID,
removing the secondary lookup embedded in the previous recipe:
function findCustomerById($id, Connection $conn)
{
 $stmt = $conn->pdo->query(
 'SELECT * FROM customer WHERE id = ' . (int) $id);
 $results = $stmt->fetch(PDO::FETCH_ASSOC);
 return $results;
}

4.	 After that, in the view logic, we import the minimum jQuery, DataTables, and
stylesheets for a zero configuration implementation. At a minimum, you will need
jQuery itself (in this example jquery-1.12.0.min.js) and DataTables (jquery.
dataTables.js). We've also added a convenient stylesheet associated with
DataTables, jquery.dataTables.css:
<!DOCTYPE html>
<head>
 <script src="https://code.jquery.com/jquery-1.12.0.min.js">
 </script>
 <script type="text/javascript"
 charset="utf8"
 src="//cdn.datatables.net/1.10.11/js/jquery.dataTables.js">
 </script>
 <link rel="stylesheet"
 type="text/css"
 href="//cdn.datatables.net/1.10.11/css/jquery.dataTables.css">
</head>

5.	 We then define a jQuery document ready function, which associates a table with
DataTables. In this case, we assign an id attribute of customerTable to the table
element that will be assigned to DataTables. You'll also notice that we specify the
AJAX data source as the script defined in step 1, chap_05_jquery_datatables_
php_lookups_ajax.php. As we have the $id available, this is appended to the
data source URL:
<script>
$(document).ready(function() {
 $('#customerTable').DataTable(
 { "ajax": '/chap_05_jquery_datatables_php_lookups_ajax.
 php?id=<?= $id ?>'
 });
});
</script>

Interacting with a Database

170

6.	 In the body of the view logic, we define the table, making sure the id attribute
matches the one specified in the preceding code. We also need to define headers
that will match the data presented in response to the AJAX request:
<table id="customerTable" class="display" cellspacing="0"
width="100%">
 <thead>
 <tr>
 <th>Transaction</th>
 <th>Date</th>
 <th>Qty</th>
 <th>Price</th>
 <th>Product</th>
 </tr>
 </thead>
</table>

7.	 Now, all that remains to do is to load the page, choose the customer ID (in this case,
at random), and let jQuery make the request for the secondary lookup.

How it works…
Create a chap_05_jquery_datatables_php_lookups_ajax.php script, which will
respond to an AJAX request. Inside, place the code to initialize auto-loading and create a
Connection instance. You can then append the code shown in step 2 of the preceding
recipe:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
include __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);

Next, create a chap_05_jquery_datatables_php_lookups.php calling program that
will pull information on a random customer. Add the function described in step 3 of the
preceding code:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
include __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
// add function findCustomerById() here
$id = random_int(1,79);
$result = findCustomerById($id, $conn);
?>

Chapter 5

171

The calling program will also contain the view logic that imports the minimum JavaScript to
implement jQuery DataTables. You can add the code shown in step 3 of the preceding code.
Then, add the document ready function and the display logic shown in steps 5 and 6.
Here is the output:

There's more…
For more information on jQuery, please visit their website at https://jquery.
com/. To read about the DataTables plugin to jQuery, refer to this article at https://
www.datatables.net/. Zero configuration data tables are discussed at https://
datatables.net/examples/basic_init/zero_configuration.html. For more
information on AJAX sourced data, have a look at https://datatables.net/examples/
data_sources/ajax.html.

https://jquery.com/
https://jquery.com/
https://www.datatables.net/
https://www.datatables.net/
https://datatables.net/examples/basic_init/zero_configuration.html
https://datatables.net/examples/basic_init/zero_configuration.html
https://datatables.net/examples/data_sources/ajax.html
https://datatables.net/examples/data_sources/ajax.html

173

Building Scalable
Websites

In this chapter, we will cover the following topics:

ff Creating a generic form element generator

ff Creating an HTML radio element generator

ff Creating an HTML select element generator

ff Implementing a form factory

ff Chaining $_POST filters

ff Chaining $_POST validators

ff Tying validation to a form

Introduction
In this chapter, we will show you how to build classes that generate HTML form elements. The
generic element generator can be used for text, text areas, passwords, and similar HTML input
types. After that, we will show variations that allow you to pre-configure the element with an
array of values. The form factory recipe will bring all these generators together, allowing you
to render an entire form using a single configuration array. Finally, we introduce recipes that
allow filtering and the validation of incoming $_POST data.

6

Building Scalable Websites

174

Creating a generic form element generator
It's pretty easy to create a function that simply outputs a form input tag such as <input
type="text" name="whatever" >. In order to make a form generator generically useful,
however, we need to think about the bigger picture. Here are some other considerations over
and above the basic input tag:

ff The form input tag and its associated HTML attributes

ff A label that tells the user what information they are entering

ff The ability to display entry errors following validation (more on that later!)

ff Some sort of wrapper, such as a <div> tag, or an HTML table <td> tag

How to do it…
1.	 First, we define a Application\Form\Generic class. This will also later serve as

a base class for specialized form elements:
namespace Application\Form;

class Generic
{
 // some code ...
}

2.	 Next, we define some class constants, which will be generally useful in form element
generation.

3.	 The first three will become keys associated with the major components of a single
form element. We then define supported input types and defaults:
const ROW = 'row';
const FORM = 'form';
const INPUT = 'input';
const LABEL = 'label';
const ERRORS = 'errors';
const TYPE_FORM = 'form';
const TYPE_TEXT = 'text';
const TYPE_EMAIL = 'email';
const TYPE_RADIO = 'radio';
const TYPE_SUBMIT = 'submit';
const TYPE_SELECT = 'select';
const TYPE_PASSWORD = 'password';
const TYPE_CHECKBOX = 'checkbox';
const DEFAULT_TYPE = self::TYPE_TEXT;
const DEFAULT_WRAPPER = 'div';

Chapter 6

175

4.	 Next, we can define properties and a constructor that sets them.

5.	 In this example, we require two properties, $name and $type, as we cannot
effectively use the element without these attributes. The other constructor arguments
are optional. Furthermore, in order to base one form element on another, we include
a provision whereby the second argument, $type, can alternatively be an instance of
Application\Form\Generic, in which case we simply run the getters (discussed
later) to populate properties:
protected $name;
protected $type = self::DEFAULT_TYPE;
protected $label = '';
protected $errors = array();
protected $wrappers;
protected $attributes; // HTML form attributes
protected $pattern = '<input type="%s" name="%s" %s>';

public function __construct($name,
 $type,
 $label = '',
 array $wrappers = array(),
 array $attributes = array(),
 array $errors = array())
{
 $this->name = $name;
 if ($type instanceof Generic) {
 $this->type = $type->getType();
 $this->label = $type->getLabelValue();
 $this->errors = $type->getErrorsArray();
 $this->wrappers = $type->getWrappers();
 $this->attributes = $type->getAttributes();
 } else {
 $this->type = $type ?? self::DEFAULT_TYPE;
 $this->label = $label;
 $this->errors = $errors;
 $this->attributes = $attributes;
 if ($wrappers) {
 $this->wrappers = $wrappers;
 } else {
 $this->wrappers[self::INPUT]['type'] =
 self::DEFAULT_WRAPPER;
 $this->wrappers[self::LABEL]['type'] =
 self::DEFAULT_WRAPPER;
 $this->wrappers[self::ERRORS]['type'] =
 self::DEFAULT_WRAPPER;
 }

Building Scalable Websites

176

 }
 $this->attributes['id'] = $name;
}

Note that $wrappers has three primary subkeys: INPUT, LABEL, and
ERRORS. This allows us to define separate wrappers for labels, the input
tag, and errors.

6.	 Before defining the core methods that will produce HTML for the label, input tag, and
errors, we should define a getWrapperPattern() method, which will produce the
appropriate wrapping tags for the label, input, and error display.

7.	 If, for example, the wrapper is defined as <div>, and its attributes include ['class'
=> 'label'], this method will return a sprintf() format pattern that looks like
this: <div class="label">%s</div>. The final HTML produced for the label, for
example, would then replace %s.

8.	 Here is how the getWrapperPattern() method might look:
public function getWrapperPattern($type)
{
 $pattern = '<' . $this->wrappers[$type]['type'];
 foreach ($this->wrappers[$type] as $key => $value) {
 if ($key != 'type') {
 $pattern .= ' ' . $key . '="' . $value . '"';
 }
 }
 $pattern .= '>%s</' . $this->wrappers[$type]['type'] . '>';
 return $pattern;
}

9.	 We are now ready to define the getLabel() method. All this method needs to do is
to plug the label into the wrapper using sprintf():
public function getLabel()
{
 return sprintf($this->getWrapperPattern(self::LABEL),
 $this->label);
}

10.	 In order to produce the core input tag, we need a way to assemble the attributes.
Fortunately, this is easily accomplished as long as they are supplied to the
constructor in the form of an associative array. All we need to do, in this case, is to
define a getAttribs() method that produces a string of key-value pairs separated
by a space. We return the final value using trim() to remove excess spaces.

Chapter 6

177

11.	 If the element includes either the value or href attribute, for security reasons we
should escape the values on the assumption that they are, or could be, user-supplied
(and therefore suspect). Accordingly, we need to add an if statement that checks
and then uses htmlspecialchars() or urlencode():
public function getAttribs()
{
 foreach ($this->attributes as $key => $value) {
 $key = strtolower($key);
 if ($value) {
 if ($key == 'value') {
 if (is_array($value)) {
 foreach ($value as $k => $i)
 $value[$k] = htmlspecialchars($i);
 } else {
 $value = htmlspecialchars($value);
 }
 } elseif ($key == 'href') {
 $value = urlencode($value);
 }
 $attribs .= $key . '="' . $value . '" ';
 } else {
 $attribs .= $key . ' ';
 }
 }
 return trim($attribs);
}

12.	 For the core input tag, we split the logic into two separate methods. The primary
method, getInputOnly(), produces only the HTML input tag. The second method,
getInputWithWrapper(), produces the input embedded in a wrapper. The reason
for the split is that when creating spin-off classes, such as a class to generate radio
buttons, we will not need the wrapper:
public function getInputOnly()
{
 return sprintf($this->pattern, $this->type, $this->name,
 $this->getAttribs());
}

public function getInputWithWrapper()
{
 return sprintf($this->getWrapperPattern(self::INPUT),
 $this->getInputOnly());
}

Building Scalable Websites

178

13.	 We now define a method that displays element validation errors. We will assume
that the errors will be supplied in the form of an array. If there are no errors, we
return an empty string. Otherwise, errors are rendered as error 1</
li>error 2 and so on:
public function getErrors()
{
 if (!$this->errors || count($this->errors == 0)) return '';
 $html = '';
 $pattern = '%s';
 $html .= '';
 foreach ($this->errors as $error)
 $html .= sprintf($pattern, $error);
 $html .= '';
 return sprintf($this->getWrapperPattern(self::ERRORS), $html);
}

14.	 For certain attributes, we might need more finite control over various aspects of the
property. As an example, we might need to add a single error to the already existing
array of errors. Also, it might be useful to set a single attribute:
public function setSingleAttribute($key, $value)
{
 $this->attributes[$key] = $value;
}
public function addSingleError($error)
{
 $this->errors[] = $error;
}

15.	 Finally, we define getters and setters that allow us to retrieve or set the values of
properties. For example, you might have noticed that the default value for $pattern
is <input type="%s" name="%s" %s>. For certain tags (for example, select
and form tags), we will need to set this property to a different value:
public function setPattern($pattern)
{
 $this->pattern = $pattern;
}
public function setType($type)
{
 $this->type = $type;
}
public function getType()
{

Chapter 6

179

 return $this->type;
}
public function addSingleError($error)
{
 $this->errors[] = $error;
}
// define similar get and set methods
// for name, label, wrappers, errors and attributes

16.	 We also need to add methods that will give the label value (not the HTML), as well as
the errors array:

public function getLabelValue()
{
 return $this->label;
}
public function getErrorsArray()
{
 return $this->errors;
}

How it works…
Be sure to copy all the preceding code into a single Application\Form\Generic class.
You can then define a chap_06_form_element_generator.php calling script that sets up
autoloading and anchors the new class:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Form\Generic;

Next, define the wrappers. For illustration, we'll use HTML table data and header tags. Note
that the label uses TH, whereas input and errors use TD:

$wrappers = [
 Generic::INPUT => ['type' => 'td', 'class' => 'content'],
 Generic::LABEL => ['type' => 'th', 'class' => 'label'],
 Generic::ERRORS => ['type' => 'td', 'class' => 'error']
];

You can now define an email element by passing parameters to the constructor:

$email = new Generic('email', Generic::TYPE_EMAIL, 'Email', $wrappers,
 ['id' => 'email',
 'maxLength' => 128,
 'title' => 'Enter address',
 'required' => '']);

Building Scalable Websites

180

Alternatively, define the password element using setters:

$password = new Generic('password', $email);
$password->setType(Generic::TYPE_PASSWORD);
$password->setLabel('Password');
$password->setAttributes(['id' => 'password',
 'title' => 'Enter your password',
 'required' => '']);

Lastly, be sure to define a submit button:

$submit = new Generic('submit',
 Generic::TYPE_SUBMIT,
 'Login',
 $wrappers,
 ['id' => 'submit','title' => 'Click to login','value' =>
 'Click Here']);

The actual display logic might look like this:

<div class="container">
 <!-- Login Form -->
 <h1>Login</h1>
 <form name="login" method="post">
 <table id="login" class="display"
 cellspacing="0" width="100%">
 <tr><?= $email->render(); ?></tr>
 <tr><?= $password->render(); ?></tr>
 <tr><?= $submit->render(); ?></tr>
 <tr>
 <td colspan=2>

 <?php var_dump($_POST); ?>
 </td>
 </tr>
 </table>
 </form>
</div>

Chapter 6

181

Here is the actual output:

Creating an HTML radio element generator
A radio button element generator will share similarities with the generic HTML form element
generator. As with any generic element, a set of radio buttons needs the ability to display an
overall label and errors. There are two major differences, however:

ff Typically, you will want two or more radio buttons

ff Each button needs to have its own label

How to do it…
1.	 First of all, create a new Application\Form\Element\Radio class that extends

Application\Form\Generic:
namespace Application\Form\Element;

use Application\Form\Generic;

class Radio extends Generic

{

 // code

}

2.	 Next, we define class constants and properties that pertain to the special needs
of a set of radio buttons.

Building Scalable Websites

182

3.	 In this illustration, we will need a spacer, which will be placed between the radio
button and its label. We also need to decide whether to place the radio button
label before or after the actual button, thus, we use the $after flag. If we need a
default, or if we are re-displaying existing form data, we need a way of designating the
selected key. Finally, we need an array of options from which we will populate the list
of buttons:
const DEFAULT_AFTER = TRUE;
const DEFAULT_SPACER = '&nbps;';
const DEFAULT_OPTION_KEY = 0;
const DEFAULT_OPTION_VALUE = 'Choose';

protected $after = self::DEFAULT_AFTER;
protected $spacer = self::DEFAULT_SPACER;
protected $options = array();
protected $selectedKey = DEFAULT_OPTION_KEY;

4.	 Given that we are extending Application\Form\Generic, we have the option of
expanding the __construct() method, or, alternatively, simply defining a method
that can be used to set specific options. For this illustration, we have chosen the
latter course.

5.	 To ensure the property $this->options is populated, the first parameter
($options) is defined as mandatory (without a default). All other parameters are
optional.
public function setOptions(array $options,
 $selectedKey = self::DEFAULT_OPTION_KEY,
 $spacer = self::DEFAULT_SPACER,
 $after = TRUE)
{
 $this->after = $after;
 $this->spacer = $spacer;
 $this->options = $options;
 $this->selectedKey = $selectedKey;
}

6.	 Finally, we are ready to override the core getInputOnly() method.

7.	 We save the id attribute into an independent variable, $baseId, and later combine
it with $count so that each id attribute is unique. If the option associated with the
selected key is defined, it is assigned as the value; otherwise, we use the default:
public function getInputOnly()
{
 $count = 1;
 $baseId = $this->attributes['id'];

Chapter 6

183

8.	 Inside the foreach() loop we check to see if the key is the one selected. If so,
the checked attribute is added for that radio button. We then call the parent class
getInputOnly() method to return the HTML for each button. Note that the value
attribute of the input element is the options array key. The button label is the options
array element value:

foreach ($this->options as $key => $value) {
 $this->attributes['id'] = $baseId . $count++;
 $this->attributes['value'] = $key;
 if ($key == $this->selectedKey) {
 $this->attributes['checked'] = '';
 } elseif (isset($this->attributes['checked'])) {
 unset($this->attributes['checked']);
 }
 if ($this->after) {
 $html = parent::getInputOnly() . $value;
 } else {
 $html = $value . parent::getInputOnly();
 }
 $output .= $this->spacer . $html;
 }
 return $output;
}

How it works…
Copy the preceding code into a new Radio.php file in the Application/Form/Element
folder. You can then define a chap_06_form_element_radio.php calling script that sets
up autoloading and anchors the new class:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Form\Generic;
use Application\Form\Element\Radio;

Next, define the wrappers using the $wrappers array defined in the previous recipe.

Then you can define a $status array and create an element instance by passing parameters
to the constructor:

$statusList = [
 'U' => 'Unconfirmed',
 'P' => 'Pending',
 'T' => 'Temporary Approval',
 'A' => 'Approved'

Building Scalable Websites

184

];

$status = new Radio('status',
 Generic::TYPE_RADIO,
 'Status',
 $wrappers,
 ['id' => 'status']);

Now you can see if there is any status input from $_GET and set the options. Any input will
become the selected key. Otherwise, the selected key is the default:

$checked = $_GET['status'] ?? 'U';
$status->setOptions($statusList, $checked, '
', TRUE);

Lastly, don't forget to define a submit button:

$submit = new Generic('submit',
 Generic::TYPE_SUBMIT,
 'Process',
 $wrappers,
 ['id' => 'submit','title' =>

 'Click to process','value' => 'Click Here']);

The display logic might look like this:

<form name="status" method="get">
<table id="status" class="display" cellspacing="0" width="100%">
 <tr><?= $status->render(); ?></tr>
 <tr><?= $submit->render(); ?></tr>
 <tr>
 <td colspan=2>

 <pre><?php var_dump($_GET); ?></pre>
 </td>
 </tr>
</table>
</form>

Chapter 6

185

Here is the actual output:

There's more…
A checkbox element generator would be almost identical to the HTML radio button generator.
The main difference is that a set of checkboxes can have more than one value checked.
Accordingly, you would use PHP array notation for the element names. The element type
should be Generic::TYPE_CHECKBOX.

Creating an HTML select element generator
Generating an HTML single select element is similar to the process of generating radio
buttons. The tags are structured differently, however, in that both a SELECT tag and a series
of OPTION tags need to be generated.

How to do it…
1.	 First of all, create a new Application\Form\Element\Select class that extends

Application\Form\Generic.

2.	 The reason why we extend Generic rather than Radio is because the structuring of
the element is entirely different:
namespace Application\Form\Element;

use Application\Form\Generic;

class Select extends Generic

Building Scalable Websites

186

{
 // code
}

3.	 The class constants and properties will only need to add slightly to Application\
Form\Generic. Unlike radio buttons or checkboxes, there is no need to account for
spacers or the placement of the selected text:
const DEFAULT_OPTION_KEY = 0;
const DEFAULT_OPTION_VALUE = 'Choose';

protected $options;
protected $selectedKey = DEFAULT_OPTION_KEY;

4.	 Now we turn our attention to setting options. As an HTML select element can select
single or multiple values, the $selectedKey property could be either a string or an
array. Accordingly, we do not add a type hint for this property. It is important, however,
that we identify whether or not the multiple attribute has been set. This can be
obtained from a $this->attributes property via inheritance from the parent
class.

5.	 If the multiple attribute has been set, it's important to formulate the name
attribute as an array. Accordingly, we would append [] to the name if this were the
case:
public function setOptions(array $options, $selectedKey =
 self::DEFAULT_OPTION_KEY)
{
 $this->options = $options;
 $this->selectedKey = $selectedKey;
 if (isset($this->attributes['multiple'])) {
 $this->name .= '[]';
 }
}

In PHP, if the HTML select multiple attribute has been set, and the name
attribute is not specified as an array, only a single value will be returned!

6.	 Before we can define the core getInputOnly() method, we need to define
a method to generate the select tag. We then return the final HTML using
sprintf(), using $pattern, $name, and the return value of getAttribs() as
arguments.

Chapter 6

187

7.	 We replace the default value for $pattern with <select name="%s" %s>. We
then loop through the attributes, adding them as key-value pairs with spaces in
between:
protected function getSelect()
{
 $this->pattern = '<select name="%s" %s> ' . PHP_EOL;
 return sprintf($this->pattern, $this->name,
 $this->getAttribs());
}

8.	 Next, we define a method to obtain the option tags that will be associated with the
select tag.

9.	 As you will recall, the key from the $this->options array represents the return
value, whereas the value part of the array represents the text that will appear on
screen. If $this->selectedKey is in array form, we check to see if the value is in
the array. Otherwise, we assume $this-> selectedKey is a string and we simply
determine if it is equal to the key. If the selected key matches, we add the selected
attribute:
protected function getOptions()
{
 $output = '';
 foreach ($this->options as $key => $value) {
 if (is_array($this->selectedKey)) {
 $selected = (in_array($key, $this->selectedKey))
 ? ' selected' : '';
 } else {
 $selected = ($key == $this->selectedKey)
 ? ' selected' : '';
 }
 $output .= '<option value="' . $key . '"'
 . $selected . '>'
 . $value
 . '</option>';
 }
 return $output;
}

10.	 Finally we are ready to override the core getInputOnly() method.

11.	 You will note that the logic for this method only needs to capture the return values
from the getSelect() and getOptions() methods described in the preceding
code. We also need to add the closing </select> tag:

public function getInputOnly()
{
 $output = $this->getSelect();
 $output .= $this->getOptions();

Building Scalable Websites

188

 $output .= '</' . $this->getType() . '>';
 return $output;
}

How it works…
Copy the code described above into a new Select.php file in the Application/Form/
Element folder. Then define a chap_06_form_element_select.php calling script that
sets up autoloading and anchors the new class:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Form\Generic;
use Application\Form\Element\Select;

Next, define the wrappers using the array $wrappers defined in the first recipe. You can also
use the $statusList array defined in the Creating an HTML radio element generator recipe.
You can then create instances of SELECT elements. The first instance is single select, and the
second is multiple:

$status1 = new Select('status1',
 Generic::TYPE_SELECT,
 'Status 1',
 $wrappers,
 ['id' => 'status1']);
$status2 = new Select('status2',
 Generic::TYPE_SELECT,
 'Status 2',
 $wrappers,
 ['id' => 'status2',
 'multiple' => '',
 'size' => '4']);

See if there is any status input from $_GET and set the options. Any input will become the
selected key. Otherwise, the selected key is the default. As you will recall, the second instance
is multiple select, so the value obtained from $_GET and the default setting should both be in
the form of an array:

$checked1 = $_GET['status1'] ?? 'U';
$checked2 = $_GET['status2'] ?? ['U'];
$status1->setOptions($statusList, $checked1);
$status2->setOptions($statusList, $checked2);

Lastly, be sure to define a submit button (as shown in the Creating a generic form element
generator recipe of this chapter).

Chapter 6

189

The actual display logic is identical to the radio button recipe, except that we need to render
two separate HTML select instances:

<form name="status" method="get">
<table id="status" class="display" cellspacing="0" width="100%">
 <tr><?= $status1->render(); ?></tr>
 <tr><?= $status2->render(); ?></tr>
 <tr><?= $submit->render(); ?></tr>
 <tr>
 <td colspan=2>

 <pre>
 <?php var_dump($_GET); ?>
 </pre>
 </td>
 </tr>
</table>
</form>

Here is the actual output:

Building Scalable Websites

190

Also, you can see how the elements appear in the view source page:

Implementing a form factory
The purpose of a form factory is to generate a usable form object from a single configuration
array. The form object should have the ability to retrieve the individual elements it contains so
that output can be generated.

How to do it…
1.	 First, let's create a class called Application\Form\Factory to contain the factory

code. It will have only one property, $elements, with a getter:
namespace Application\Form;

class Factory
{
 protected $elements;
 public function getElements()
 {
 return $this->elements;
 }
 // remaining code
}

Chapter 6

191

2.	 Before we define the primary form generation method, it's important to consider
what configuration format we plan to receive, and what exactly the form generation
will produce. For this illustration, we will assume that the generation will produce a
Factory instance, with an $elements property. This property would be an array of
Application\Form\Generic or Application\Form\Element classes.

3.	 We are now ready to tackle the generate() method. This will cycle through the
configuration array, creating the appropriate Application\Form\Generic
or Application\Form\Element* objects, which in turn will be stored in
the $elements array. The new method will accept the configuration array as an
argument. It is convenient to define this method as static so that we can generate as
many instances as are needed using different blocks of configuration.

4.	 We create an instance of Application\Form\Factory, and then we start looping
through the configuration array:
public static function generate(array $config)
{
 $form = new self();
 foreach ($config as $key => $p) {

5.	 Next, we check for parameters that are optional in the constructor for the
Application\Form\Generic class:
 $p['errors'] = $p['errors'] ?? array();
 $p['wrappers'] = $p['wrappers'] ?? array();
 $p['attributes'] = $p['attributes'] ?? array();

6.	 Now that all the constructor parameters are in place, we can create the form element
instance, which is then stored in $elements:
 $form->elements[$key] = new $p['class']
 (
 $key,
 $p['type'],
 $p['label'],
 $p['wrappers'],
 $p['attributes'],
 $p['errors']
);

7.	 Next, we turn our attention to options. If the options parameter is set, we extract
the array values into variables using list(). We then test the element type using
switch() and run setOptions() with the appropriate number of parameters:
 if (isset($p['options'])) {
 list($a,$b,$c,$d) = $p['options'];
 switch ($p['type']) {
 case Generic::TYPE_RADIO :
 case Generic::TYPE_CHECKBOX :

Building Scalable Websites

192

 $form->elements[$key]->setOptions($a,$b,$c,$d);
 break;
 case Generic::TYPE_SELECT :
 $form->elements[$key]->setOptions($a,$b);
 break;
 default :
 $form->elements[$key]->setOptions($a,$b);
 break;
 }
 }
 }

8.	 Finally, we return the form object and close out the method:
 return $form;
}

9.	 Theoretically, at this point, we could easily render the form in our view logic by simply
iterating through the array of elements and running the render() method. The view
logic might look like this:
<form name="status" method="get">
 <table id="status" class="display" cellspacing="0" width="100%">
 <?php foreach ($form->getElements() as $element) : ?>
 <?php echo $element->render(); ?>
 <?php endforeach; ?>
 </table>
</form>

10.	 Finally, we return the form object and close out the method.

11.	 Next, we need to define a discrete Form class under Application\Form\
Element:
namespace Application\Form\Element;
class Form extends Generic
{
 public function getInputOnly()
 {
 $this->pattern = '<form name="%s" %s> ' . PHP_EOL;
 return sprintf($this->pattern, $this->name,
 $this->getAttribs());
 }
 public function closeTag()
 {
 return '</' . $this->type . '>';
 }
}

Chapter 6

193

12.	 Returning to the Application\Form\Factory class, we now need to define
a simple method that returns a sprintf() wrapper pattern that will serve as
an envelope for input. As an example, if the wrapper is div with an attribute
class="test" we would produce this pattern: <div class="test">%s</div>.
Our content would then be substituted in place of %s by the sprintf() function:
protected function getWrapperPattern($wrapper)
{
 $type = $wrapper['type'];
 unset($wrapper['type']);
 $pattern = '<' . $type;
 foreach ($wrapper as $key => $value) {
 $pattern .= ' ' . $key . '="' . $value . '"';
 }
 $pattern .= '>%s</' . $type . '>';
 return $pattern;
}

13.	 Finally, we are ready to define a method that does overall form rendering. We obtain
wrapper sprintf() patterns for each form row. We then loop through the elements,
render each one, and wrap the output in the row pattern. Next, we generate an
Application\Form\Element\Form instance. We then retrieve the form wrapper
sprintf() pattern and check the form_tag_inside_wrapper flag, which tells us
whether we need to place the form tag inside or outside the form wrapper:

public static function render($form, $formConfig)
{
 $rowPattern = $form->getWrapperPattern(
 $formConfig['row_wrapper']);
 $contents = '';
 foreach ($form->getElements() as $element) {
 $contents .= sprintf($rowPattern, $element->render());
 }
 $formTag = new Form($formConfig['name'],
 Generic::TYPE_FORM,
 '',
 array(),
 $formConfig['attributes']);

 $formPattern = $form->getWrapperPattern(
 $formConfig['form_wrapper']);
 if (isset($formConfig['form_tag_inside_wrapper'])
 && !$formConfig['form_tag_inside_wrapper']) {
 $formPattern = '%s' . $formPattern . '%s';
 return sprintf($formPattern, $formTag->getInputOnly(),
 $contents, $formTag->closeTag());

Building Scalable Websites

194

 } else {
 return sprintf($formPattern, $formTag->getInputOnly()
 . $contents . $formTag->closeTag());
 }
}

How it works…
Referring to the preceding code, create the Application\Form\Factory and
Application\Form\Element\Form classes.

Next, you can define a chap_06_form_factor.php calling script that sets up autoloading
and anchors the new class:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Form\Generic;
use Application\Form\Factory;

Next, define the wrappers using the $wrappers array defined in the first recipe. You can also
use the $statusList array defined in the second recipe.

See if there is any status input from $_POST. Any input will become the selected key.
Otherwise, the selected key is the default.

$email = $_POST['email'] ?? '';
$checked0 = $_POST['status0'] ?? 'U';
$checked1 = $_POST['status1'] ?? 'U';
$checked2 = $_POST['status2'] ?? ['U'];
$checked3 = $_POST['status3'] ?? ['U'];

Now you can define the overall form configuration. The name and attributes parameters
are used to configure the form tag itself. The other two parameters represent form-level and
row-level wrappers. Lastly, we provide a form_tag_inside_wrapper flag to indicate that
the form tag should not appear inside the wrapper (that is, <table>). If the wrapper was
<div>, we would set this flag to TRUE:

$formConfig = [
 'name' => 'status_form',
 'attributes' => ['id'=>'statusForm','method'=>'post',
 'action'=>'chap_06_form_factory.php'],
 'row_wrapper' => ['type' => 'tr', 'class' => 'row'],
 'form_wrapper' => ['type'=>'table','class'=>'table',
 'id'=>'statusTable',

Chapter 6

195

 'class'=>'display','cellspacing'=>'0'],
 'form_tag_inside_wrapper' => FALSE,
];

Next, define an array that holds parameters for each form element to be created by the
factory. The array key becomes the name of the form element, and must be unique:

$config = [
 'email' => [
 'class' => 'Application\Form\Generic',
 'type' => Generic::TYPE_EMAIL,
 'label' => 'Email',
 'wrappers' => $wrappers,
 'attributes'=> ['id'=>'email','maxLength'=>128,
 'title'=>'Enter address',
 'required'=>'','value'=>strip_tags($email)]
],
 'password' => [
 'class' => 'Application\Form\Generic',
 'type' => Generic::TYPE_PASSWORD,
 'label' => 'Password',
 'wrappers' => $wrappers,
 'attributes' => ['id'=>'password',
 'title' => 'Enter your password',
 'required' => '']
],
 // etc.
];

Lastly, be sure to generate the form:

$form = Factory::generate($config);

The actual display logic is extremely simple, as we simply call the form level render()
method:

<?= $form->render($form, $formConfig); ?>

Building Scalable Websites

196

Here is the actual output:

Chaining $_POST filters
Proper filtering and validation is a common problem when processing data submitted by users
from an online form. It is arguably also the number one security vulnerability for a website.
Furthermore, it can be quite awkward to have the filters and validators scattered all over the
application. A chaining mechanism would resolve these issues neatly, and would also allow
you to exert control over the order in which the filters and validators are processed.

How to do it…
1.	 There is a little-known PHP function, filter_input_array(), that, at first glance,

seems well suited for this task. Looking more deeply into its functionality, however, it
soon becomes apparent that this function was designed in the early days, and is not
up to modern requirements for protection against attack and flexibility. Accordingly,
we will instead present a much more flexible mechanism based on an array of
callbacks performing filtering and validation.

Chapter 6

197

The difference between filtering and validation is that filtering can
potentially remove or transform values. Validation, on the other
hand, tests data using criteria appropriate to the nature of the
data, and returns a boolean result.

2.	 In order to increase flexibility, we will make our base filter and validation classes
relatively light. By this, we mean not defining any specific filters or validation methods.
Instead, we will operate entirely on the basis of a configuration array of callbacks. In
order to ensure compatibility in filtering and validation results, we will also define a
specific result object, Application\Filter\Result.

3.	 The primary function of the Result class will be to hold a $item value, which would
be the filtered value or a boolean result of validation. Another property, $messages,
will hold an array of messages populated during the filtering or validation operation.
In the constructor, the value supplied for $messages is formulated as an array. You
might observe that both properties are defined public. This is to facilitate ease of
access:
namespace Application\Filter;

class Result
{

 public $item; // (mixed) filtered data | (bool) result
 of validation
 public $messages = array(); // [(string) message,
 (string) message]

 public function __construct($item, $messages)
 {
 $this->item = $item;
 if (is_array($messages)) {
 $this->messages = $messages;
 } else {
 $this->messages = [$messages];
 }
 }

4.	 We also define a method that allows us to merge this Result instance with another.
This is important as at some point we will be processing the same value through
a chain of filters. In such a case, we want the newly filtered value to overwrite the
existing one, but we want the messages to be merged:
public function mergeResults(Result $result)
{
 $this->item = $result->item;
 $this->mergeMessages($result);

Building Scalable Websites

198

}

public function mergeMessages(Result $result)
{
 if (isset($result->messages) && is_array($result->messages)) {
 $this->messages = array_merge($this->messages,
 $result->messages);
 }
}

5.	 Finally, to finish the methods for this class, we add a method that merges validation
results. The important consideration here is that any value of FALSE, up or down the
validation chain, must cause the entire result to be FALSE:
public function mergeValidationResults(Result $result)
{
 if ($this->item === TRUE) {
 $this->item = (bool) $result->item;
 }
 $this->mergeMessages($result);
 }

}

6.	 Next, to make sure that the callbacks produce compatible results, we will define an
Application\Filter\CallbackInterface interface. You will note that we are
taking advantage of the PHP 7 ability to data type the return value to ensure that we
are getting a Result instance in return:
namespace Application\Filter;
interface CallbackInterface
{
 public function __invoke ($item, $params) : Result;
}

7.	 Each callback should reference the same set of messages. Accordingly, we define
a Application\Filter\Messages class with a series of static properties. We
provide methods to set all messages, or just one message. The $messages property
has been made public for easier access:
namespace Application\Filter;
class Messages
{
 const MESSAGE_UNKNOWN = 'Unknown';
 public static $messages;
 public static function setMessages(array $messages)
 {

Chapter 6

199

 self::$messages = $messages;
 }
 public static function setMessage($key, $message)
 {
 self::$messages[$key] = $message;
 }
 public static function getMessage($key)
 {
 return self::$messages[$key] ?? self::MESSAGE_UNKNOWN;
 }
}

8.	 We are now in a position to define a Application\Web\AbstractFilter
class that implements core functionality. As mentioned previously, this class
will be relatively lightweight and we do not need to worry about specific
filters or validators as they will be supplied through configuration. We use the
UnexpectedValueException class, provided as part of the PHP 7 Standard PHP
Library (SPL), in order to throw a descriptive exception in case one of the callbacks
does not implement CallbackInterface:
namespace Application\Filter;
use UnexpectedValueException;
abstract class AbstractFilter
{
 // code described in the next several bullets

9.	 First, we define useful class constants that hold various housekeeping values. The
last four shown here control the format of messages to be displayed, and how to
describe missing data:
const BAD_CALLBACK = 'Must implement CallbackInterface';
const DEFAULT_SEPARATOR = '
' . PHP_EOL;
const MISSING_MESSAGE_KEY = 'item.missing';
const DEFAULT_MESSAGE_FORMAT = '%20s : %60s';
const DEFAULT_MISSING_MESSAGE = 'Item Missing';

10.	 Next, we define core properties. $separator is used in conjunction with filtering and
validation messages. $callbacks represents the array of callbacks that perform
filtering and validation. $assignments map data fields to filters and/or validators.
$missingMessage is represented as a property so that it can be overwritten (that
is, for multi-language websites). Finally, $results is an array of Application\
Filter\Result objects and is populated by the filtering or validation operation:
protected $separator; // used for message display
protected $callbacks;
protected $assignments;
protected $missingMessage;
protected $results = array();

Building Scalable Websites

200

11.	 At this point, we can build the __construct() method. Its main function is to set
the array of callbacks and assignments. It also either sets values or accepts defaults
for the separator (used in message display), and the missing message:
public function __construct(array $callbacks, array $assignments,
 $separator = NULL, $message = NULL)
{
 $this->setCallbacks($callbacks);
 $this->setAssignments($assignments);
 $this->setSeparator($separator ?? self::DEFAULT_SEPARATOR);
 $this->setMissingMessage($message
 ?? self::DEFAULT_MISSING_MESSAGE);
}

12.	 Next, we define a series of methods that allow us to set or remove callbacks. Notice
that we allow the getting and setting of a single callback. This is useful if you have
a generic set of callbacks, and need to modify just one. You will also note that
setOneCall() checks to see if the callback implements CallbackInterface. If it
does not, an UnexpectedValueException is thrown:
public function getCallbacks()
{
 return $this->callbacks;
}

public function getOneCallback($key)
{
 return $this->callbacks[$key] ?? NULL;
}

public function setCallbacks(array $callbacks)
{
 foreach ($callbacks as $key => $item) {
 $this->setOneCallback($key, $item);
 }
}

public function setOneCallback($key, $item)
{
 if ($item instanceof CallbackInterface) {
 $this->callbacks[$key] = $item;
 } else {
 throw new UnexpectedValueException(self::BAD_CALLBACK);
 }

Chapter 6

201

}

public function removeOneCallback($key)
{
 if (isset($this->callbacks[$key]))
 unset($this->callbacks[$key]);
}

13.	 Methods for results processing are quite simple. For convenience, we added
getItemsAsArray(), otherwise getResults() will return an array of Result
objects:
public function getResults()
{
 return $this->results;
}

public function getItemsAsArray()
{
 $return = array();
 if ($this->results) {
 foreach ($this->results as $key => $item)
 $return[$key] = $item->item;
 }
 return $return;
}

14.	 Retrieving messages is just a matter of looping through the array of $this
->results and extracting the $messages property. For convenience, we also added
getMessageString() with some formatting options. To easily produce an array
of messages, we use the PHP 7 yield from syntax. This has the effect of turning
getMessages() into a delegating generator. The array of messages becomes a
sub-generator:
public function getMessages()
{
 if ($this->results) {
 foreach ($this->results as $key => $item)
 if ($item->messages) yield from $item->messages;
 } else {
 return array();
 }
}

public function getMessageString($width = 80, $format = NULL)
{

Building Scalable Websites

202

 if (!$format)
 $format = self::DEFAULT_MESSAGE_FORMAT . $this->separator;
 $output = '';
 if ($this->results) {
 foreach ($this->results as $key => $value) {
 if ($value->messages) {
 foreach ($value->messages as $message) {
 $output .= sprintf(
 $format, $key, trim($message));
 }
 }
 }
 }
 return $output;
}

15.	 Lastly, we define a mixed group of useful getters and setters:
 public function setMissingMessage($message)
 {
 $this->missingMessage = $message;
 }
 public function setSeparator($separator)
 {
 $this->separator = $separator;
 }
 public function getSeparator()
 {
 return $this->separator;
 }
 public function getAssignments()
 {
 return $this->assignments;
 }
 public function setAssignments(array $assignments)
 {
 $this->assignments = $assignments;
 }
 // closing bracket for class AbstractFilter
}

16.	 Filtering and validation, although often performed together, are just as often
performed separately. Accordingly, we define discrete classes for each. We'll start with
Application\Filter\Filter. We make this class extend AbstractFilter in
order to provide the core functionality described previously:

Chapter 6

203

namespace Application\Filter;
class Filter extends AbstractFilter
{
 // code
}

17.	 Within this class we define a core process() method that scans an array of data
and applies filters as per the array of assignments. If there are no assigned filters for
this data set, we simply return NULL:
public function process(array $data)
{
 if (!(isset($this->assignments)
 && count($this->assignments))) {
 return NULL;
 }

18.	 Otherwise, we initialize $this->results to an array of Result objects where the
$item property is the original value from $data, and the $messages property is an
empty array:
foreach ($data as $key => $value) {
 $this->results[$key] = new Result($value, array());
}

19.	 We then make a copy of $this->assignments and check to see if there are any
global filters (identified by the '*' key. If so, we run processGlobal() and then
unset the '*' key:
$toDo = $this->assignments;
if (isset($toDo['*'])) {
 $this->processGlobalAssignment($toDo['*'], $data);
 unset($toDo['*']);
}

20.	 Finally, we loop through any remaining assignments, calling
processAssignment():
foreach ($toDo as $key => $assignment) {
 $this->processAssignment($assignment, $key);
}

21.	 As you will recall, each assignment is keyed to the data field, and represents an array
of callbacks for that field. Thus, in processGlobalAssignment() we need to loop
through the array of callbacks. In this case, however, because these assignments are
global, we also need to loop through the entire data set, and apply each global filter in
turn:
protected function processGlobalAssignment($assignment, $data)
{
 foreach ($assignment as $callback) {

Building Scalable Websites

204

 if ($callback === NULL) continue;
 foreach ($data as $k => $value) {
 $result = $this->callbacks[$callback['key']]
 ($this->results[$k]->item,
 $callback['params']);
 $this->results[$k]->mergeResults($result);
 }
 }
}

The tricky bit is this line of code:
$result = $this->callbacks[$callback['key']]($this
->results[$k]->item, $callback['params']);

Remember, each callback is actually an anonymous class that defines the
PHP magic __invoke() method. The arguments supplied are the actual
data item to be filtered, and an array of parameters. By running $this-
>callbacks[$callback['key']]() we are in fact magically calling
__invoke().

22.	 When we define processAssignment(), in a manner akin to
processGlobalAssignment(), we need to execute each remaining callback
assigned to each data key:

 protected function processAssignment($assignment, $key)
 {
 foreach ($assignment as $callback) {
 if ($callback === NULL) continue;
 $result = $this->callbacks[$callback['key']]
 ($this->results[$key]->item,
 $callback['params']);
 $this->results[$key]->mergeResults($result);
 }
 }
} // closing brace for Application\Filter\Filter

It is important that any filtering operation that alters the original user-supplied
data should display a message indicating that a change was made. This can
become part of an audit trail to safeguard you against potential legal liability
when a change is made without user knowledge or consent.

Chapter 6

205

How it works…
Create an Application\Filter folder. In this folder, create the following class files, using
code from the preceding steps:

Application\Filter* class file Code described in these steps
Result.php 3 - 5
CallbackInterface.php 6
Messages.php 7
AbstractFilter.php 8 – 15
Filter.php 16 - 22

Next, take the code discussed in step 5, and use it to configure an array of messages in
a chap_06_post_data_config_messages.php file. Each callback references the
Messages::$messages property. Here is a sample configuration:

<?php
use Application\Filter\Messages;
Messages::setMessages(
 [
 'length_too_short' => 'Length must be at least %d',
 'length_too_long' => 'Length must be no more than %d',
 'required' => 'Please be sure to enter a value',
 'alnum' => 'Only letters and numbers allowed',
 'float' => 'Only numbers or decimal point',
 'email' => 'Invalid email address',
 'in_array' => 'Not found in the list',
 'trim' => 'Item was trimmed',
 'strip_tags' => 'Tags were removed from this item',
 'filter_float' => 'Converted to a decimal number',
 'phone' => 'Phone number is [+n] nnn-nnn-nnnn',
 'test' => 'TEST',
 'filter_length' => 'Reduced to specified length',
]
);

Next, create a chap_06_post_data_config_callbacks.php callback configuration file
that contains configuration for filtering callbacks, as described in step 4. Each callback should
follow this generic template:

'callback_key' => new class () implements CallbackInterface
{
 public function __invoke($item, $params) : Result

Building Scalable Websites

206

 {
 $changed = array();
 $filtered = /* perform filtering operation on $item */
 if ($filtered !== $item)
 $changed = Messages::$messages['callback_key'];
 return new Result($filtered, $changed);
 }
}

The callbacks themselves must implement the interface and return a Result instance. We
can take advantage of the PHP 7 anonymous class capability by having our callbacks return
an anonymous class that implements CallbackInterface. Here is how an array of filtering
callbacks might look:

use Application\Filter\ { Result, Messages, CallbackInterface };
$config = ['filters' => [
 'trim' => new class () implements CallbackInterface
 {
 public function __invoke($item, $params) : Result
 {
 $changed = array();
 $filtered = trim($item);
 if ($filtered !== $item)
 $changed = Messages::$messages['trim'];
 return new Result($filtered, $changed);
 }
 },
 'strip_tags' => new class ()
 implements CallbackInterface
 {
 public function __invoke($item, $params) : Result
 {
 $changed = array();
 $filtered = strip_tags($item);
 if ($filtered !== $item)
 $changed = Messages::$messages['strip_tags'];
 return new Result($filtered, $changed);
 }
 },
 // etc.
]
];

Chapter 6

207

For test purposes, we will use the prospects table as a target. Instead of providing data from
$_POST, we will construct an array of good and bad data:

You can now create a chap_06_post_data_filtering.php script that sets up
autoloading, includes the messages and callbacks configuration files:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
include __DIR__ . '/chap_06_post_data_config_messages.php';
include __DIR__ . '/chap_06_post_data_config_callbacks.php';

You then need to define assignments that represent a mapping between the data fields and
filter callbacks. Use the * key to define a global filter that applies to all data:

$assignments = [
 '*' => [['key' => 'trim', 'params' => []],
 ['key' => 'strip_tags', 'params' => []]],
 'first_name' => [['key' => 'length',
 'params' => ['length' => 128]]],
 'last_name' => [['key' => 'length',
 'params' => ['length' => 128]]],
 'city' => [['key' => 'length',
 'params' => ['length' => 64]]],
 'budget' => [['key' => 'filter_float', 'params' => []]],
];

Building Scalable Websites

208

Next, define good and bad test data:

$goodData = [
 'first_name' => 'Your Full',
 'last_name' => 'Name',
 'address' => '123 Main Street',
 'city' => 'San Francisco',
 'state_province' => 'California',
 'postal_code' => '94101',
 'phone' => '+1 415-555-1212',
 'country' => 'US',
 'email' => 'your@email.address.com',
 'budget' => '123.45',
];
$badData = [
 'first_name' => 'This+Name<script>bad tag</script>Valid!',
 'last_name' => 'ThisLastNameIsWayTooLong
 Abcdefghijklmnopqrstuvwxyz0123456789
 Abcdefghijklmnopqrstuvwxyz0123456789
 Abcdefghijklmnopqrstuvwxyz0123456789
 Abcdefghijklmnopqrstuvwxyz0123456789',
 //'address' => '', // missing
 'city' => '
ThisCityNameIsTooLong0123456789012345678901234
56789012345678901234567890123456789 ',
 //'state_province'=> '', // missing
 'postal_code' => '!"£$%^Non Alpha Chars',
 'phone' => ' 12345 ',
 'country' => 'XX',
 'email' => 'this.is@not@an.email',
 'budget' => 'XXX',
];

Finally, you can create an Application\Filter\Filter instance, and test the data:

$filter = new Application\Filter\Filter(
$config['filters'], $assignments);
$filter->setSeparator(PHP_EOL);
 $filter->process($goodData);
echo $filter->getMessageString();
 var_dump($filter->getItemsAsArray());

$filter->process($badData);
echo $filter->getMessageString();
var_dump($filter->getItemsAsArray());

Chapter 6

209

Processing good data produces no messages other than one indicating that the value for the
float field was converted from string to float. The bad data, on the other hand, produces the
following output:

You will also notice that tags were removed from first_name, and that both last_name
and city were truncated.

There's more…
The filter_input_array() function takes two arguments: the input source (in the
form of a pre-defined constant used to indicate one of the $_* PHP super-globals, that is,
$_POST), and an array of matching field definitions as keys and filters or validators as values.
This function performs not only filtering operations, but validation as well. The flags labeled
sanitize are actually filters.

See also
Documentation and examples of filter_input_array() can be found at http://php.
net/manual/en/function.filter-input-array.php. You might also have a look at
the different types of filters that are available on http://php.net/manual/en/filter.
filters.php.

http://php.net/manual/en/function.filter-input-array.php
http://php.net/manual/en/function.filter-input-array.php
http://php.net/manual/en/filter.filters.php
http://php.net/manual/en/filter.filters.php

Building Scalable Websites

210

Chaining $_POST validators
The heavy lifting for this recipe has already been accomplished in the preceding recipe. Core
functionality is defined by Application\Filter\AbstractFilter. The actual validation
is performed by an array of validating callbacks.

How to do it…
1.	 Look over the preceding recipe, Chaining $_POST filters. We will be using all of the

classes and configuration files in this recipe, except where noted here.

2.	 To begin, we define a configuration array of validation callbacks. As with the
preceding recipe, each callback should implement Application\Filter\
CallbackInterface, and should return an instance of Application\Filter\
Result. Validators would take this generic form:
use Application\Filter\ { Result, Messages, CallbackInterface };
$config = [
 // validator callbacks
 'validators' => [
 'key' => new class () implements CallbackInterface
 {
 public function __invoke($item, $params) : Result
 {
 // validation logic goes here
 return new Result($valid, $error);
 }
 },
 // etc.

3.	 Next, we define a Application\Filter\Validator class, which loops through
the array of assignments, testing each data item against its assigned validator
callbacks. We make this class extend AbstractFilter in order to provide the core
functionality described previously:
namespace Application\Filter;
class Validator extends AbstractFilter
{
 // code
}

Chapter 6

211

4.	 Within this class, we define a core process() method that scans an array of data
and applies validators as per the array of assignments. If there are no assigned
validators for this data set, we simply return the current status of $valid (which is
TRUE):
public function process(array $data)
{
 $valid = TRUE;
 if (!(isset($this->assignments)
 && count($this->assignments))) {
 return $valid;
 }

5.	 Otherwise, we initialize $this->results to an array of Result objects where the
$item property is set to TRUE, and the $messages property is an empty array:
foreach ($data as $key => $value) {
 $this->results[$key] = new Result(TRUE, array());
}

6.	 We then make a copy of $this->assignments and check to see if there are any
global filters (identified by the '*' key). If so, we run processGlobal() and then
unset the '*' key:
$toDo = $this->assignments;
if (isset($toDo['*'])) {
 $this->processGlobalAssignment($toDo['*'], $data);
 unset($toDo['*']);
}

7.	 Finally, we loop through any remaining assignments, calling
processAssignment(). This is an ideal place to check to see if any fields present
in the assignments array is missing from the data. Note that we set $valid to FALSE
if any validation callback returns FALSE:
foreach ($toDo as $key => $assignment) {
 if (!isset($data[$key])) {
 $this->results[$key] =
 new Result(FALSE, $this->missingMessage);
 } else {
 $this->processAssignment(
 $assignment, $key, $data[$key]);
 }
 if (!$this->results[$key]->item) $valid = FALSE;
 }
 return $valid;
}

Building Scalable Websites

212

8.	 As you will recall, each assignment is keyed to the data field, and represents an array
of callbacks for that field. Thus, in processGlobalAssignment(), we need to loop
through the array of callbacks. In this case, however, because these assignments are
global, we also need to loop through the entire data set, and apply each global filter
in turn.

9.	 In contrast to the equivalent Application\Filter\Fiter::processGlobalAss
ignment() method, we need to call mergeValidationResults(). The reason for
this is that if the value of $result->item is already FALSE, we need to ensure that
it does not subsequently get overwritten by a value of TRUE. Any validator in the chain
that returns FALSE must overwrite any other validation result:
protected function processGlobalAssignment($assignment, $data)
{
 foreach ($assignment as $callback) {
 if ($callback === NULL) continue;
 foreach ($data as $k => $value) {
 $result = $this->callbacks[$callback['key']]
 ($value, $callback['params']);
 $this->results[$k]->mergeValidationResults($result);
 }
 }
}

10.	 When we define processAssignment(), in a manner akin to
processGlobalAssignment(), we need to execute each remaining callback
assigned to each data key, again calling mergeValidationResults():

protected function processAssignment($assignment, $key, $value)
{
 foreach ($assignment as $callback) {
 if ($callback === NULL) continue;
 $result = $this->callbacks[$callback['key']]
 ($value, $callback['params']);
 $this->results[$key]->mergeValidationResults($result);
 }
 }

How it works…
As with the preceding recipe, be sure to define the following classes:

ff Application\Filter\Result

ff Application\Filter\CallbackInterface

Chapter 6

213

ff Application\Filter\Messages

ff Application\Filter\AbstractFilter

You can use the chap_06_post_data_config_messages.php file, also described in the
previous recipe.

Next, create a Validator.php file in the Application\Filter folder. Place the code
described in step 3 to 10.

Next, create a chap_06_post_data_config_callbacks.php callback configuration file
that contains configurations for validation callbacks, as described in step 2. Each callback
should follow this generic template:

'validation_key' => new class () implements CallbackInterface
{
 public function __invoke($item, $params) : Result
 {
 $error = array();
 $valid = /* perform validation operation on $item */
 if (!$valid)
 $error[] = Messages::$messages['validation_key'];
 return new Result($valid, $error);
 }
}

Now you can create a chap_06_post_data_validation.php calling script that initializes
autoloading and includes the configuration scripts:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
include __DIR__ . '/chap_06_post_data_config_messages.php';
include __DIR__ . '/chap_06_post_data_config_callbacks.php';

Next, define an array of assignments, mapping data fields to validator callback keys:

$assignments = [
 'first_name' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 128]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],
 'last_name'=> [['key' => 'length',
 'params' => ['min' => 1, 'max' => 128]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],

Building Scalable Websites

214

 'address' => [['key' => 'length',
 'params' => ['max' => 256]]],
 'city' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 64]]],
 'state_province'=> [['key' => 'length',
 'params' => ['min' => 1, 'max' => 32]]],
 'postal_code' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 16]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],
 'phone' => [['key' => 'phone', 'params' => []]],
 'country' => [['key' => 'in_array',
 'params' => $countries],
 ['key' => 'required','params' => []]],
 'email' => [['key' => 'email', 'params' => []],
 ['key' => 'length',
 'params' => ['max' => 250]],
 ['key' => 'required','params' => []]],
 'budget' => [['key' => 'float', 'params' => []]]
];

For test data, use the same good and bad data defined in the chap_06_post_data_
filtering.php file described in the previous recipe. After that, you are in a position to
create an Application\Filter\Validator instance, and test the data:

$validator = new Application\Filter\Validator($config['validators'],
$assignments);
$validator->setSeparator(PHP_EOL);
$validator->process($badData);
echo $validator->getMessageString(40, '%14s : %-26s' . PHP_EOL);
var_dump($validator->getItemsAsArray());
$validator->process($goodData);
echo $validator->getMessageString(40, '%14s : %-26s' . PHP_EOL);
var_dump($validator->getItemsAsArray());

As expected, the good data does not produce any validation errors. The bad data, on the other
hand, generates the following output:

Chapter 6

215

Notice that the missing fields, address and state_province validate FALSE, and return
the missing item message.

Tying validation to a form
When a form is first rendered, there is little value in having a form class (such as
Application\Form\Factory, described in the previous recipe) tied to a class that can
perform filtering or validation (such as the Application\Filter* described in the
previous recipe). Once the form data has been submitted, however, interest grows. If the
form data fails validation, the values can be filtered, and then re-displayed. Validation error
messages can be tied to form elements, and rendered next to form fields.

How to do it…
1.	 First of all, be sure to implement the classes defined in the Implementing a Form

Factory, Chaining $_POST Filters, and Chaining $_POST Validators recipes.

2.	 We will now turn our attention to the Application\Form\Factory class, and add
properties and setters that allow us to attach instances of Application\Filter\
Filter and Application\Filter\Validator. We also need define $data,
which will be used to retain the filtered and/or validated data:
const DATA_NOT_FOUND = 'Data not found. Run setData()';
const FILTER_NOT_FOUND = 'Filter not found. Run setFilter()';

Building Scalable Websites

216

const VALIDATOR_NOT_FOUND = 'Validator not found.
 Run setValidator()';

protected $filter;
protected $validator;
protected $data;

public function setFilter(Filter $filter)
{
 $this->filter = $filter;
}

public function setValidator(Validator $validator)
{
 $this->validator = $validator;
}

public function setData($data)
{
 $this->data = $data;
}

3.	 Next, we define a validate() method that calls the process() method of the
embedded Application\Filter\Validator instance. We check to see if
$data and $validator exist. If not, the appropriate exceptions are thrown with
instructions on which method needs to be run first:
public function validate()
{
 if (!$this->data)
 throw new RuntimeException(self::DATA_NOT_FOUND);

 if (!$this->validator)
 throw new RuntimeException(self::VALIDATOR_NOT_FOUND);

4.	 After calling the process() method, we associate validation result messages
with form element messages. Note that the process() method returns a boolean
value that represents the overall validation status of the data set. When the form
is re-displayed following failed validation, error messages will appear next to each
element:
$valid = $this->validator->process($this->data);

foreach ($this->elements as $element) {
 if (isset($this->validator->getResults()
 [$element->getName()])) {
 $element->setErrors($this->validator->getResults()

Chapter 6

217

 [$element->getName()]->messages);
 }
 }
 return $valid;
 }

5.	 In a similar manner, we define a filter() method that calls the process()
method of the embedded Application\Filter\Filter instance. As with the
validate() method described in step 3, we need to check for the existence of
$data and $filter. If either is missing, we throw a RuntimeException with the
appropriate message:
public function filter()
{
 if (!$this->data)
 throw new RuntimeException(self::DATA_NOT_FOUND);

 if (!$this->filter)
 throw new RuntimeException(self::FILTER_NOT_FOUND);

6.	 We then run the process() method, which produces an array of Result objects
where the $item property represents the end result of the filter chain. We then loop
through the results, and, if the corresponding $element key matches, set the value
attribute to the filtered value. We also add any messages resulting from the filtering
process. When the form is then re-displayed, all value attributes will display filtered
results:

$this->filter->process($this->data);
foreach ($this->filter->getResults() as $key => $result) {
 if (isset($this->elements[$key])) {
 $this->elements[$key]
 ->setSingleAttribute('value', $result->item);
 if (isset($result->messages)
 && count($result->messages)) {
 foreach ($result->messages as $message) {
 $this->elements[$key]->addSingleError($message);
 }
 }
 }
}
}

Building Scalable Websites

218

How it works…
You can start by making the changes to Application\Form\Factory as described above.
For a test target you can use the prospects database table shown in the How it works…
section of the Chaining $_POST filters recipe. The various column settings should give you an
idea of which form elements, filters, and validators to define.

As an example, you can define a chap_06_tying_filters_to_form_definitions.php
file, which will contain definitions for form wrappers, elements, and filter assignments. Here
are some examples:

<?php
use Application\Form\Generic;

define('VALIDATE_SUCCESS', 'SUCCESS: form submitted ok!');
define('VALIDATE_FAILURE', 'ERROR: validation errors detected');

$wrappers = [
 Generic::INPUT => ['type' => 'td', 'class' => 'content'],
 Generic::LABEL => ['type' => 'th', 'class' => 'label'],
 Generic::ERRORS => ['type' => 'td', 'class' => 'error']
];

$elements = [
 'first_name' => [
 'class' => 'Application\Form\Generic',
 'type' => Generic::TYPE_TEXT,
 'label' => 'First Name',
 'wrappers' => $wrappers,
 'attributes'=> ['maxLength'=>128,'required'=>'']
],
 'last_name' => [
 'class' => 'Application\Form\Generic',
 'type' => Generic::TYPE_TEXT,
 'label' => 'Last Name',
 'wrappers' => $wrappers,
 'attributes'=> ['maxLength'=>128,'required'=>'']
],
 // etc.
];

// overall form config
$formConfig = [
 'name' => 'prospectsForm',
 'attributes' => [

Chapter 6

219

'method'=>'post',
'action'=>'chap_06_tying_filters_to_form.php'
],
 'row_wrapper' => ['type' => 'tr', 'class' => 'row'],
 'form_wrapper' => [
 'type'=>'table',
 'class'=>'table',
 'id'=>'prospectsTable',
 'class'=>'display','cellspacing'=>'0'
],
 'form_tag_inside_wrapper' => FALSE,
];

$assignments = [
 'first_name' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 128]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],
 'last_name' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 128]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],
 'address' => [['key' => 'length',
 'params' => ['max' => 256]]],
 'city' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 64]]],
 'state_province'=> [['key' => 'length',
 'params' => ['min' => 1, 'max' => 32]]],
 'postal_code' => [['key' => 'length',
 'params' => ['min' => 1, 'max' => 16]],
 ['key' => 'alnum',
 'params' => ['allowWhiteSpace' => TRUE]],
 ['key' => 'required','params' => []]],
 'phone' => [['key' => 'phone', 'params' => []]],
 'country' => [['key' => 'in_array',
 'params' => $countries],
 ['key' => 'required','params' => []]],
 'email' => [['key' => 'email', 'params' => []],
 ['key' => 'length',
 'params' => ['max' => 250]],
 ['key' => 'required','params' => []]],
 'budget' => [['key' => 'float', 'params' => []]]
];

Building Scalable Websites

220

You can use the already existing chap_06_post_data_config_callbacks.php and
chap_06_post_data_config_messages.php files described in the previous recipes.
Finally, define a chap_06_tying_filters_to_form.php file that sets up autoloading and
includes these three configuration files:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
include __DIR__ . '/chap_06_post_data_config_messages.php';
include __DIR__ . '/chap_06_post_data_config_callbacks.php';
include __DIR__ . '/chap_06_tying_filters_to_form_definitions.php';

Next, you can create instances of the form factory, filter, and validator classes:

use Application\Form\Factory;
use Application\Filter\ { Validator, Filter };
$form = Factory::generate($elements);
$form->setFilter(new Filter($callbacks['filters'],
$assignments['filters']));
$form->setValidator(new Validator($callbacks['validators'],
$assignments['validators']));

You can then check to see if there is any $_POST data. If so, perform validation and filtering:

$message = '';
if (isset($_POST['submit'])) {
 $form->setData($_POST);
 if ($form->validate()) {
 $message = VALIDATE_SUCCESS;
 } else {
 $message = VALIDATE_FAILURE;
 }
 $form->filter();
}
?>

The view logic is extremely simple: just render the form. Any validation messages and values
for the various elements will be assigned as part of validation and filtering:

 <?= $form->render($form, $formConfig); ?>

Chapter 6

221

Here is an example using bad form data:

Notice the filtering and validation messages. Also notice the bad tags:

223

7
Accessing Web

Services

In this chapter, we will cover the following topics:

ff Converting between PHP and XML

ff Creating a simple REST client

ff Creating a simple REST server

ff Creating a simple SOAP client

ff Creating a simple SOAP server

Introduction
Making background queries to external web services is becoming an ever-increasing part
of any PHP web practice. The ability to provide appropriate, timely, and plentiful data means
more business for your customers and the websites you develop. We start with a couple
of recipes aimed at data conversion between eXtensible Markup Language (XML) and native
PHP. Next, we show you how to implement a simple Representational State Transfer (REST)
client and server. After that, we turn our attention to SOAP clients and servers.

Converting between PHP and XML
When considering a conversion between PHP native data types and XML, we would normally
consider an array as the primary target. With this in mind, the process of converting from a
PHP array to XML differs radically from the approach needed to do the reverse.

Accessing Web Services

224

Objects could also be considered for conversion; however, it is difficult to
render object methods in XML. Properties can be represented, however, by
using the get_object_vars() function, which reads object properties
into an array.

How to do it…
1.	 First, we define an Application\Parse\ConvertXml class. This class will hold

 the methods that will convert from XML to a PHP array, and vice versa. We will need
both the SimpleXMLElement and SimpleXMLIterator classes from the SPL:
namespace Application\Parse;
use SimpleXMLIterator;
use SimpleXMLElement;
class ConvertXml
{
}

2.	 Next, we define a xmlToArray() method that will accept a SimpleXMLIterator
instance as an argument. It will be called recursively and will produce a PHP array
from an XML document. We take advantage of the SimpleXMLIterator ability to
advance through the XML document, using the key(), current(), next(), and
rewind() methods to navigate:
public function xmlToArray(SimpleXMLIterator $xml) : array
{
 $a = array();
 for($xml->rewind(); $xml->valid(); $xml->next()) {
 if(!array_key_exists($xml->key(), $a)) {
 $a[$xml->key()] = array();
 }
 if($xml->hasChildren()){
 $a[$xml->key()][] = $this->xmlToArray($xml->current());
 }
 else{
 $a[$xml->key()] = (array) $xml->current()->attributes();
 $a[$xml->key()]['value'] = strval($xml->current());
 }
 }
 return $a;
}

Chapter 7

225

3.	 For the reverse process, also called recursively, we define two methods. The first
method, arrayToXml(), sets up an initial SimpleXMLElement instance, and
then calls the second method, phpToXml():
public function arrayToXml(array $a)
{
 $xml = new SimpleXMLElement(
 '<?xml version="1.0" standalone="yes"?><root></root>');
 $this->phpToXml($a, $xml);
 return $xml->asXML();
}

4.	 Note that in the second method, we use get_object_vars() in case one of
the array elements is an object. You'll also note that numbers alone are not
allowed as XML tags, which means adding some text in front of the number:

protected function phpToXml($value, &$xml)
{
 $node = $value;
 if (is_object($node)) {
 $node = get_object_vars($node);
 }
 if (is_array($node)) {
 foreach ($node as $k => $v) {
 if (is_numeric($k)) {
 $k = 'number' . $k;
 }
 if (is_array($v)) {
 $newNode = $xml->addChild($k);
 $this->phpToXml($v, $newNode);
 } elseif (is_object($v)) {
 $newNode = $xml->addChild($k);
 $this->phpToXml($v, $newNode);
 } else {
 $xml->addChild($k, $v);
 }
 }
 } else {
 $xml->addChild(self::UNKNOWN_KEY, $node);
 }
}

Accessing Web Services

226

How it works…
As a sample XML document, you can use the Web Services Definition Language (WSDL) for
the United States National Weather Service. This is an XML document that describes a SOAP
service, and can be found at http://graphical.weather.gov/xml/SOAP_server/
ndfdXMLserver.php?wsdl.

We will use the SimpleXMLIterator class to provide an iteration mechanism. You can then
configure autoloading, and get an instance of Application\Parse\ConvertXml, using
xmlToArray() to convert the WSDL to a PHP array:

require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Parse\ConvertXml;
$wsdl = 'http://graphical.weather.gov/xml/'
. 'SOAP_server/ndfdXMLserver.php?wsdl';
$xml = new SimpleXMLIterator($wsdl, 0, TRUE);
$convert = new ConvertXml();
var_dump($convert->xmlToArray($xml));

The resulting array is shown here:

To do the reverse, use the arrayToXml() method described in this recipe. As a source
document, you can use a source/data/mongo.db.global.php file that contains an
outline for a training video on MongoDB available through O'Reilly Media (disclaimer: by this
author!). Using the same autoloader configuration and instance of Application\Parse\
ConvertXml, here is the sample code you could use:

http://graphical.weather.gov/xml/SOAP_server/ndfdXMLserver.php?wsdl
http://graphical.weather.gov/xml/SOAP_server/ndfdXMLserver.php?wsdl

Chapter 7

227

$convert = new ConvertXml();
header('Content-Type: text/xml');
echo $convert->arrayToXml(include CONFIG_FILE);

Here is the output in a browser:

Creating a simple REST client
REST clients use HyperText Transfer Protocol (HTTP) to generate requests to external
web services. By changing the HTTP method, we can cause the external service to perform
different operations. Although there are quite a few methods (or verbs) available, we will only
focus on GET and POST. In this recipe, we will use the Adapter software design pattern to
present two different ways of implementing a REST client.

How to do it…
1.	 Before we can define REST client adapters, we need to define common classes to

represent request and response information. First, we will start with an abstract class
that has methods and properties needed for either a request or response:
namespace Application\Web;

class AbstractHttp
{

Accessing Web Services

228

2.	 Next, we define class constants that represent HTTP information:
const METHOD_GET = 'GET';
const METHOD_POST = 'POST';
const METHOD_PUT = 'PUT';
const METHOD_DELETE = 'DELETE';
const CONTENT_TYPE_HTML = 'text/html';
const CONTENT_TYPE_JSON = 'application/json';
const CONTENT_TYPE_FORM_URL_ENCODED =
 'application/x-www-form-urlencoded';
const HEADER_CONTENT_TYPE = 'Content-Type';
const TRANSPORT_HTTP = 'http';
const TRANSPORT_HTTPS = 'https';
const STATUS_200 = '200';
const STATUS_401 = '401';
const STATUS_500 = '500';

3.	 We then define properties that are needed for either a request or a response:
protected $uri; // i.e. http://xxx.com/yyy
protected $method; // i.e. GET, PUT, POST, DELETE
protected $headers; // HTTP headers
protected $cookies; // cookies
protected $metaData; // information about the transmission
protected $transport; // i.e. http or https
protected $data = array();

4.	 It logically follows to define getters and setters for these properties:
public function setMethod($method)
{
 $this->method = $method;
}
public function getMethod()
{
 return $this->method ?? self::METHOD_GET;
}
// etc.

5.	 Some properties require access by key. For this purpose, we define getXxxByKey()
and setXxxByKey() methods:
public function setHeaderByKey($key, $value)
{
 $this->headers[$key] = $value;
}
public function getHeaderByKey($key)
{

Chapter 7

229

 return $this->headers[$key] ?? NULL;
}
public function getDataByKey($key)
{
 return $this->data[$key] ?? NULL;
}
public function getMetaDataByKey($key)
{
 return $this->metaData[$key] ?? NULL;
}

6.	 In some cases, the request will require parameters. We will assume that the
parameters will be in the form of a PHP array stored in the $data property. We
can then build the request URL using the http_build_query() function:
public function setUri($uri, array $params = NULL)
{
 $this->uri = $uri;
 $first = TRUE;
 if ($params) {
 $this->uri .= '?' . http_build_query($params);
 }
}
public function getDataEncoded()
{
 return http_build_query($this->getData());
}

7.	 Finally, we set $transport based on the original request:
public function setTransport($transport = NULL)
{
 if ($transport) {
 $this->transport = $transport;
 } else {
 if (substr($this->uri, 0, 5) == self::TRANSPORT_HTTPS) {
 $this->transport = self::TRANSPORT_HTTPS;
 } else {
 $this->transport = self::TRANSPORT_HTTP;
 }
 }
 }

Accessing Web Services

230

8.	 In this recipe, we will define a Application\Web\Request class that can
accept parameters when we wish to generate a request, or, alternatively,
populate properties with incoming request information when implementing
a server that accepts requests:
namespace Application\Web;
class Request extends AbstractHttp
{
 public function __construct(
 $uri = NULL, $method = NULL, array $headers = NULL,
 array $data = NULL, array $cookies = NULL)
 {
 if (!$headers) $this->headers = $_SERVER ?? array();
 else $this->headers = $headers;
 if (!$uri) $this->uri = $this->headers['PHP_SELF'] ?? '';
 else $this->uri = $uri;
 if (!$method) $this->method =
 $this->headers['REQUEST_METHOD'] ?? self::METHOD_GET;
 else $this->method = $method;
 if (!$data) $this->data = $_REQUEST ?? array();
 else $this->data = $data;
 if (!$cookies) $this->cookies = $_COOKIE ?? array();
 else $this->cookies = $cookies;
 $this->setTransport();
 }
}

9.	 Now we can turn our attention to a response class. In this case, we will define an
Application\Web\Received class. The name reflects the fact that we are re-
packaging data received from the external web service:

namespace Application\Web;
class Received extends AbstractHttp
{
 public function __construct(
 $uri = NULL, $method = NULL, array $headers = NULL,
 array $data = NULL, array $cookies = NULL)
 {
 $this->uri = $uri;
 $this->method = $method;
 $this->headers = $headers;
 $this->data = $data;
 $this->cookies = $cookies;
 $this->setTransport();
 }
}

Chapter 7

231

Creating a streams-based REST client
We are now ready to consider two different ways to implement a REST client. The first
approach is to use an underlying PHP I/O layer referred to as Streams. This layer provides a
series of wrappers that provide access to external streaming resources. By default, any of the
PHP file commands will use the file wrapper, which gives access to the local filesystem. We will
use the http:// or https:// wrappers to implement the Application\Web\Client\
Streams adapter:

1.	 First, we define a Application\Web\Client\Streams class:
namespace Application\Web\Client;
use Application\Web\ { Request, Received };
class Streams
{
 const BYTES_TO_READ = 4096;

2.	 Next, we define a method to send the request to the external web service. In the case
of GET, we add the parameters to the URI. In the case of POST, we create a stream
context that contains metadata instructing the remote service that we are supplying
data. Using PHP Streams, making a request is just a matter of composing the URI,
and, in the case of POST, setting the stream context. We then use a simple fopen():
public static function send(Request $request)
{
 $data = $request->getDataEncoded();
 $received = new Received();
 switch ($request->getMethod()) {
 case Request::METHOD_GET :
 if ($data) {
 $request->setUri($request->getUri() . '?' . $data);
 }
 $resource = fopen($request->getUri(), 'r');
 break;
 case Request::METHOD_POST :
 $opts = [
 $request->getTransport() =>
 [
 'method' => Request::METHOD_POST,
 'header' => Request::HEADER_CONTENT_TYPE
 . ': ' . Request::CONTENT_TYPE_FORM_URL_ENCODED,
 'content' => $data
]
];
 $resource = fopen($request->getUri(), 'w',
 stream_context_create($opts));
 break;

Accessing Web Services

232

 }
 return self::getResults($received, $resource);
}

3.	 Finally, we have a look at retrieving and packaging results into a Received object.
You will notice that we added a provision to decode data received in JSON format:

protected static function getResults(Received $received, $resource)
{
 $received->setMetaData(stream_get_meta_data($resource));
 $data = $received->getMetaDataByKey('wrapper_data');
 if (!empty($data) && is_array($data)) {
 foreach($data as $item) {
 if (preg_match('!^HTTP/\d\.\d (\d+?) .*?$!',
 $item, $matches)) {
 $received->setHeaderByKey('status', $matches[1]);
 } else {
 list($key, $value) = explode(':', $item);
 $received->setHeaderByKey($key, trim($value));
 }
 }
 }
 $payload = '';
 while (!feof($resource)) {
 $payload .= fread($resource, self::BYTES_TO_READ);
 }
 if ($received->getHeaderByKey(Received::HEADER_CONTENT_TYPE)) {
 switch (TRUE) {
 case stripos($received->getHeaderByKey(
 Received::HEADER_CONTENT_TYPE),
 Received::CONTENT_TYPE_JSON) !== FALSE:
 $received->setData(json_decode($payload));
 break;
 default :
 $received->setData($payload);
 break;
 }
 }
 return $received;
}

Chapter 7

233

Defining a cURL-based REST client
We will now have a look at our second approach for a REST client, one of which is based on
the cURL extension:

1.	 For this approach, we will assume the same request and response classes. The initial
class definition is much the same as for the Streams client discussed previously:
namespace Application\Web\Client;
use Application\Web\ { Request, Received };
class Curl
{

2.	 The send() method is quite a bit simpler than when using Streams. All we need to
do is to define an array of options, and let cURL do the rest:
public static function send(Request $request)
{
 $data = $request->getDataEncoded();
 $received = new Received();
 switch ($request->getMethod()) {
 case Request::METHOD_GET :
 $uri = ($data)
 ? $request->getUri() . '?' . $data
 : $request->getUri();
 $options = [
 CURLOPT_URL => $uri,
 CURLOPT_HEADER => 0,
 CURLOPT_RETURNTRANSFER => TRUE,
 CURLOPT_TIMEOUT => 4
];
 break;

3.	 POST requires slightly different cURL parameters:
case Request::METHOD_POST :
 $options = [
 CURLOPT_POST => 1,
 CURLOPT_HEADER => 0,
 CURLOPT_URL => $request->getUri(),
 CURLOPT_FRESH_CONNECT => 1,
 CURLOPT_RETURNTRANSFER => 1,
 CURLOPT_FORBID_REUSE => 1,
 CURLOPT_TIMEOUT => 4,
 CURLOPT_POSTFIELDS => $data
];
 break;
}

Accessing Web Services

234

4.	 We then execute a series of cURL functions and run the results through
getResults():
$ch = curl_init();
curl_setopt_array($ch, ($options));
if(! $result = curl_exec($ch))
{
 trigger_error(curl_error($ch));
}
$received->setMetaData(curl_getinfo($ch));
curl_close($ch);
return self::getResults($received, $result);
}

5.	 The getResults() method packages results into a Received object:

protected static function getResults(Received $received, $payload)
{
 $type = $received->getMetaDataByKey('content_type');
 if ($type) {
 switch (TRUE) {
 case stripos($type,
 Received::CONTENT_TYPE_JSON) !== FALSE):
 $received->setData(json_decode($payload));
 break;
 default :
 $received->setData($payload);
 break;
 }
 }
 return $received;
}

How it works…
Be sure to copy all the preceding code into these classes:

ff Application\Web\AbstractHttp

ff Application\Web\Request

ff Application\Web\Received

ff Application\Web\Client\Streams

ff Application\Web\Client\Curl

Chapter 7

235

For this illustration, you can make a REST request to the Google Maps API to obtain
driving directions between two points. You also need to create an API key for this purpose
by following the directions given at https://developers.google.com/maps/
documentation/directions/get-api-key.

You can then define a chap_07_simple_rest_client_google_maps_curl.php
calling script that issues a request using the Curl client. You might also consider define a
chap_07_simple_rest_client_google_maps_streams.php calling script that
issues a request using the Streams client:

<?php
define('DEFAULT_ORIGIN', 'New York City');
define('DEFAULT_DESTINATION', 'Redondo Beach');
define('DEFAULT_FORMAT', 'json');
$apiKey = include __DIR__ . '/google_api_key.php';
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Web\Request;
use Application\Web\Client\Curl;

You can then get the origin and destination:

$start = $_GET['start'] ?? DEFAULT_ORIGIN;
$end = $_GET['end'] ?? DEFAULT_DESTINATION;
$start = strip_tags($start);
$end = strip_tags($end);

You are now in a position to populate the Request object, and use it to generate the request:

$request = new Request(
 'https://maps.googleapis.com/maps/api/directions/json',
 Request::METHOD_GET,
 NULL,
 ['origin' => $start, 'destination' => $end, 'key' => $apiKey],
 NULL
);

$received = Curl::send($request);
$routes = $received->getData()->routes[0];
include __DIR__ . '/chap_07_simple_rest_client_google_maps_template.
php';

For the purposes of illustration, you could also define a template that represents view
logic to display the results of the request:

<?php foreach ($routes->legs as $item) : ?>
 <!-- Trip Info -->

https://developers.google.com/maps/documentation/directions/get-api-key
https://developers.google.com/maps/documentation/directions/get-api-key

Accessing Web Services

236

Distance: <?= $item->distance->text; ?>

Duration: <?= $item->duration->text; ?>
 <!-- Driving Directions -->
 <table>
 <tr>
 <th>Distance</th><th>Duration</th><th>Directions</th>
 </tr>
 <?php foreach ($item->steps as $step) : ?>
 <?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>
 <tr>
 <td class="<?= $class ?>"><?= $step->distance->text ?></td>
 <td class="<?= $class ?>"><?= $step->duration->text ?></td>
 <td class="<?= $class ?>">
 <?= $step->html_instructions ?></td>
 </tr>
 <?php endforeach; ?>
 </table>
<?php endforeach; ?>

Here are the results of the request as seen in a browser:

Chapter 7

237

There's more…
PHP Standards Recommendations (PSR-7) precisely defines request and response objects
to be used when making requests between PHP applications. This is covered extensively in
Appendix, Defining PSR-7 Classes.

See also
For more information on Streams, see this PHP documentation page http://php.net/
manual/en/book.stream.php. An often asked question is "what is the difference between
HTTP PUT and POST?" for an excellent discussion on this topic please refer to http://
stackoverflow.com/questions/107390/whats-the-difference-between-a-
post-and-a-put-http-request. For more information on obtaining an API key from
Google, please refer to these web pages:

https://developers.google.com/maps/documentation/directions/get-api-
key

https://developers.google.com/maps/documentation/directions/
intro#Introduction

Creating a simple REST server
There are several considerations when implementing a REST server. The answers to these
three questions will then let you define your REST service:

ff How is the raw request captured?

ff What Application Programming Interface (API) do you want to publish?

ff How do you plan to map HTTP verbs (for example, GET, PUT, POST, and DELETE) to
API methods?

How to do it…
1.	 We will implement our REST server by building onto the request and response classes

defined in the previous recipe, Creating a simple REST client. Review the classes
discussed in the previous recipe, including the following:

�� Application\Web\AbstractHttp

�� Application\Web\Request

�� Application\Web\Received

http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php
http://stackoverflow.com/questions/107390/whats-the-difference-between-a-post-and-a-put-http-request
http://stackoverflow.com/questions/107390/whats-the-difference-between-a-post-and-a-put-http-request
http://stackoverflow.com/questions/107390/whats-the-difference-between-a-post-and-a-put-http-request
https://developers.google.com/maps/documentation/directions/get-api-key
https://developers.google.com/maps/documentation/directions/get-api-key
https://developers.google.com/maps/documentation/directions/intro#Introduction
https://developers.google.com/maps/documentation/directions/intro#Introduction

Accessing Web Services

238

2.	 We will also need to define a formal Application\Web\Response response class,
based on AbstractHttp. The primary difference between this class and the others
is that it accepts an instance of Application\Web\Request as an argument. The
primary work is accomplished in the __construct() method. It's also important to
set the Content-Type header and status:
namespace Application\Web;
class Response extends AbstractHttp
{

 public function __construct(Request $request = NULL,
 $status = NULL, $contentType = NULL)
 {
 if ($request) {
 $this->uri = $request->getUri();
 $this->data = $request->getData();
 $this->method = $request->getMethod();
 $this->cookies = $request->getCookies();
 $this->setTransport();
 }
 $this->processHeaders($contentType);
 if ($status) {
 $this->setStatus($status);
 }
 }
 protected function processHeaders($contentType)
 {
 if (!$contentType) {
 $this->setHeaderByKey(self::HEADER_CONTENT_TYPE,
 self::CONTENT_TYPE_JSON);
 } else {
 $this->setHeaderByKey(self::HEADER_CONTENT_TYPE,
 $contentType);
 }
 }
 public function setStatus($status)
 {
 $this->status = $status;
 }
 public function getStatus()
 {
 return $this->status;
 }
}

Chapter 7

239

3.	 We are now in a position to define the Application\Web\Rest\Server class. You
may be surprised at how simple it is. The real work is done in the associated API class:

Note the use of the PHP 7 group use syntax:
use Application\Web\ { Request,Response,Received }

namespace Application\Web\Rest;
use Application\Web\ { Request, Response, Received };
class Server
{
 protected $api;
 public function __construct(ApiInterface $api)
 {
 $this->api = $api;
 }

4.	 Next, we define a listen() method that serves as a target for the request. The
heart of the server implementation is this line of code:
$jsonData = json_decode(file_get_contents('php://input'),true);

5.	 This captures raw input, which is assumed to be in JSON format:
public function listen()
{
 $request = new Request();
 $response = new Response($request);
 $getPost = $_REQUEST ?? array();
 $jsonData = json_decode(
 file_get_contents('php://input'),true);
 $jsonData = $jsonData ?? array();

 $request->setData(array_merge($getPost,$jsonData));

We have also added a provision for authentication. Otherwise, anybody could
make requests and obtain potentially sensitive data. You will note that we do
not have the server class performing authentication; rather, we leave it to the
API class:

if (!$this->api->authenticate($request)) {
 $response->setStatus(Request::STATUS_401);
 echo $this->api::ERROR;
 exit;
}

Accessing Web Services

240

6.	 We then map API methods to the primary HTTP methods GET, PUT, POST,
and DELETE:
$id = $request->getData()[$this->api::ID_FIELD] ?? NULL;
switch (strtoupper($request->getMethod())) {
 case Request::METHOD_POST :
 $this->api->post($request, $response);
 break;
 case Request::METHOD_PUT :
 $this->api->put($request, $response);
 break;
 case Request::METHOD_DELETE :
 $this->api->delete($request, $response);
 break;
 case Request::METHOD_GET :
 default :
 // return all if no params
 $this->api->get($request, $response);
}

7.	 Finally, we package the response and send it out, JSON-encoded:
 $this->processResponse($response);
 echo json_encode($response->getData());
}

8.	 The processResponse() method sets headers and makes sure the result
is packaged as an Application\Web\Response object:
protected function processResponse($response)
{
 if ($response->getHeaders()) {
 foreach ($response->getHeaders() as $key => $value) {
 header($key . ': ' . $value, TRUE,
 $response->getStatus());
 }
 }
 header(Request::HEADER_CONTENT_TYPE
 . ': ' . Request::CONTENT_TYPE_JSON, TRUE);
 if ($response->getCookies()) {
 foreach ($response->getCookies() as $key => $value) {
 setcookie($key, $value);
 }
 }
}

Chapter 7

241

9.	 As mentioned earlier, the real work is done by the API class. We start by defining
an abstract class that ensures the primary methods get(), put(), and so on are
represented, and that all such methods accept request and response objects as
arguments. You might notice that we have added a generateToken() method
that uses the PHP 7 random_bytes() function to generate a truly random
series of 16 bytes:
namespace Application\Web\Rest;
use Application\Web\ { Request, Response };
abstract class AbstractApi implements ApiInterface
{
 const TOKEN_BYTE_SIZE = 16;
 protected $registeredKeys;
 abstract public function get(Request $request,
 Response $response);
 abstract public function put(Request $request,
 Response $response);
 abstract public function post(Request $request,
 Response $response);
 abstract public function delete(Request $request,
 Response $response);
 abstract public function authenticate(Request $request);
 public function __construct($registeredKeys, $tokenField)
 {
 $this->registeredKeys = $registeredKeys;
 }
 public static function generateToken()
 {
 return bin2hex(random_bytes(self::TOKEN_BYTE_SIZE));
 }
}

10.	 We also define a corresponding interface that can be used for architectural
and design purposes, as well as code development control:
namespace Application\Web\Rest;
use Application\Web\ { Request, Response };
interface ApiInterface
{
 public function get(Request $request, Response $response);
 public function put(Request $request, Response $response);
 public function post(Request $request, Response $response);
 public function delete(Request $request, Response $response);
 public function authenticate(Request $request);
}

Accessing Web Services

242

11.	 Here, we present a sample API based on AbstractApi. This class leverages
database classes defined in Chapter 5, Interacting with a Database:
namespace Application\Web\Rest;
use Application\Web\ { Request, Response, Received };
use Application\Entity\Customer;
use Application\Database\ { Connection, CustomerService };

class CustomerApi extends AbstractApi
{
 const ERROR = 'ERROR';
 const ERROR_NOT_FOUND = 'ERROR: Not Found';
 const SUCCESS_UPDATE = 'SUCCESS: update succeeded';
 const SUCCESS_DELETE = 'SUCCESS: delete succeeded';
 const ID_FIELD = 'id'; // field name of primary key
 const TOKEN_FIELD = 'token'; // field used for authentication
 const LIMIT_FIELD = 'limit';
 const OFFSET_FIELD = 'offset';
 const DEFAULT_LIMIT = 20;
 const DEFAULT_OFFSET = 0;

 protected $service;

 public function __construct($registeredKeys,
 $dbparams, $tokenField = NULL)
 {
 parent::__construct($registeredKeys, $tokenField);
 $this->service = new CustomerService(
 new Connection($dbparams));
 }

12.	 All methods receive request and response as arguments. You will notice the use
of getDataByKey() to retrieve data items. The actual database interaction is
performed by the service class. You might also notice that in all cases, we set an
HTTP status code to inform the client of success or failure. In the case of get(), we
look for an ID parameter. If received, we deliver information on a single customer
only. Otherwise, we deliver a list of all customers using limit and offset:
public function get(Request $request, Response $response)
{
 $result = array();
 $id = $request->getDataByKey(self::ID_FIELD) ?? 0;
 if ($id > 0) {
 $result = $this->service->
 fetchById($id)->entityToArray();
 } else {

Chapter 7

243

 $limit = $request->getDataByKey(self::LIMIT_FIELD)
 ?? self::DEFAULT_LIMIT;
 $offset = $request->getDataByKey(self::OFFSET_FIELD)
 ?? self::DEFAULT_OFFSET;
 $result = [];
 $fetch = $this->service->fetchAll($limit, $offset);
 foreach ($fetch as $row) {
 $result[] = $row;
 }
 }
 if ($result) {
 $response->setData($result);
 $response->setStatus(Request::STATUS_200);
 } else {
 $response->setData([self::ERROR_NOT_FOUND]);
 $response->setStatus(Request::STATUS_500);
 }
}

13.	 The put() method is used to insert customer data:
public function put(Request $request, Response $response)
{
 $cust = Customer::arrayToEntity($request->getData(),
 new Customer());
 if ($newCust = $this->service->save($cust)) {
 $response->setData(['success' => self::SUCCESS_UPDATE,
 'id' => $newCust->getId()]);
 $response->setStatus(Request::STATUS_200);
 } else {
 $response->setData([self::ERROR]);
 $response->setStatus(Request::STATUS_500);
 }
}

14.	 The post() method is used to update existing customer entries:
public function post(Request $request, Response $response)
{
 $id = $request->getDataByKey(self::ID_FIELD) ?? 0;
 $reqData = $request->getData();
 $custData = $this->service->
 fetchById($id)->entityToArray();
 $updateData = array_merge($custData, $reqData);
 $updateCust = Customer::arrayToEntity($updateData,

Accessing Web Services

244

 new Customer());
 if ($this->service->save($updateCust)) {
 $response->setData(['success' => self::SUCCESS_UPDATE,
 'id' => $updateCust->getId()]);
 $response->setStatus(Request::STATUS_200);
 } else {
 $response->setData([self::ERROR]);
 $response->setStatus(Request::STATUS_500);
 }
}

15.	 As the name implies, delete() removes a customer entry:
public function delete(Request $request, Response $response)
{
 $id = $request->getDataByKey(self::ID_FIELD) ?? 0;
 $cust = $this->service->fetchById($id);
 if ($cust && $this->service->remove($cust)) {
 $response->setData(['success' => self::SUCCESS_DELETE,
 'id' => $id]);
 $response->setStatus(Request::STATUS_200);
 } else {
 $response->setData([self::ERROR_NOT_FOUND]);
 $response->setStatus(Request::STATUS_500);
 }
}

16.	 Finally, we define authenticate() to provide, in this example, a low-level
mechanism to protect API usage:

public function authenticate(Request $request)
{
 $authToken = $request->getDataByKey(self::TOKEN_FIELD)
 ?? FALSE;
 if (in_array($authToken, $this->registeredKeys, TRUE)) {
 return TRUE;
 } else {
 return FALSE;
 }
}
}

Chapter 7

245

How it works…
Define the following classes, which were discussed in the previous recipe:

ff Application\Web\AbstractHttp

ff Application\Web\Request

ff Application\Web\Received

You can then define the following classes, described in this recipe, summarized in this table:

Class Application\Web* Discussed in these steps
Response 2
Rest\Server 3 – 8
Rest\AbstractApi 9
Rest\ApiInterface 10
Rest\CustomerApi 11 – 16

You are now free to develop your own API class. If you choose to follow the illustration
Application\Web\Rest\CustomerApi, however, you will need to also be sure to
implement these classes, covered in Chapter 5, Interacting with a Database:

ff Application\Entity\Customer

ff Application\Database\Connection

ff Application\Database\CustomerService

You can now define a chap_07_simple_rest_server.php script that invokes
the REST server:

<?php
$dbParams = include __DIR__ . '/../../config/db.config.php';
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Web\Rest\Server;
use Application\Web\Rest\CustomerApi;
$apiKey = include __DIR__ . '/api_key.php';
$server = new Server(new CustomerApi([$apiKey], $dbParams, 'id'));
$server->listen();

You can then use the built-in PHP 7 development server to listen on port 8080
for REST requests:

php -S localhost:8080 chap_07_simple_rest_server.php

Accessing Web Services

246

To test your API, use the Application\Web\Rest\AbstractApi::generateToken()
method to generate an authentication token that you can place in an api_key.php file,
something like this:

<?php return '79e9b5211bbf2458a4085707ea378129';

You can then use a generic API client (such as the one described in the previous recipe),
or a browser plugin such as RESTClient by Chao Zhou (see http://restclient.net/
for more information) to generate sample requests. Make sure you include the token for your
request, otherwise the API as defined will reject the request.

Here is an example of a POST request for ID 1, which sets the balance field to a
value of 888888:

There's more…
There are a number of libraries that help you implement a REST server. One of my favorites
is an example implementing a REST server in a single file: https://www.leaseweb.com/
labs/2015/10/creating-a-simple-rest-api-in-php/

Various frameworks, such as CodeIgniter and Zend Framework, also have REST
server implementations.

http://restclient.net/
https://www.leaseweb.com/labs/2015/10/creating-a-simple-rest-api-in-php/
https://www.leaseweb.com/labs/2015/10/creating-a-simple-rest-api-in-php/

Chapter 7

247

Creating a simple SOAP client
Using SOAP, in contrast to the process of implementing a REST client or server, is quite easy
as there is a PHP SOAP extension that provides both capabilities.

A frequently asked question is "what is the difference between SOAP and
REST?" SOAP uses XML internally as its data format. SOAP uses HTTP but
only for transport, and otherwise has no awareness of other HTTP methods.
REST directly operates HTTP, and can use anything for data formats, but JSON
is preferred. Another key difference is that SOAP can operate in conjunction
with a WSDL, which makes the service self-describing, thus more publicly
available. Thus, SOAP services are often offered by public institutions such as
national health organizations.

How to do it…
For this example, we will make a SOAP request for an existing SOAP service offered by the
United States National Weather service:

1.	 The first consideration is to identify the WSDL document. The WSDL is an XML
document that describes the service:
$wsdl = 'http://graphical.weather.gov/xml/SOAP_server/'
 . 'ndfdXMLserver.php?wsdl';

2.	 Next, we create a soap client instance using the WSDL:
$soap = new SoapClient($wsdl, array('trace' => TRUE));

3.	 We are then free to initialize some variables in anticipation of a weather forecast
request:
$units = 'm';
$params = '';
$numDays = 7;
$weather = '';
$format = '24 hourly';
$startTime = new DateTime();

4.	 We can then make a LatLonListCityNames() SOAP request, identified as an
operation in the WSDL, for a list of cities supported by the service. The request is
returned in XML format, which suggests creating a SimpleXLMElement instance:
$xml = new SimpleXMLElement($soap->LatLonListCityNames(1));

Accessing Web Services

248

5.	 Unfortunately, the list of cities and their corresponding latitude and longitude are in
separate XML nodes. Accordingly, we use the array_combine() PHP function to
create an associative array where latitude/longitude is the key, and the city name
is the value. We can then later use this to present an HTML SELECT drop-down list,
using asort() to alphabetize the list:
$cityNames = explode('|', $xml->cityNameList);
$latLonCity = explode(' ', $xml->latLonList);
$cityLatLon = array_combine($latLonCity, $cityNames);
asort($cityLatLon);

6.	 We can then get city data from a web request as follows:
$currentLatLon = (isset($_GET['city'])) ? strip_tags(
 urldecode($_GET['city'])) : '';

7.	 The SOAP call we wish to make is NDFDgenByDay(). We can determine the nature
of the parameters supplied to the SOAP server by examining the WSDL:
<message name="NDFDgenByDayRequest">
<part name="latitude" type="xsd:decimal"/>
<part name="longitude" type="xsd:decimal"/>
<part name="startDate" type="xsd:date"/>
<part name="numDays" type="xsd:integer"/>
<part name="Unit" type="xsd:string"/>
<part name="format" type="xsd:string"/>
</message>

8.	 If the value of $currentLatLon is set, we can process the request. We wrap the
request in a try {} catch {} block in case any exceptions are thrown:

if ($currentLatLon) {
 list($lat, $lon) = explode(',', $currentLatLon);
 try {
 $weather = $soap->NDFDgenByDay($lat,$lon,
 $startTime->format('Y-m-d'),$numDays,$unit,$format);
 } catch (Exception $e) {
 $weather .= PHP_EOL;
 $weather .= 'Latitude: ' . $lat . ' | Longitude: ' . $lon;
 $weather .= 'ERROR' . PHP_EOL;
 $weather .= $e->getMessage() . PHP_EOL;
 $weather .= $soap->__getLastResponse() . PHP_EOL;
 }
}
?>

Chapter 7

249

How it works…
Copy all the preceding code into a chap_07_simple_soap_client_weather_service.
php file. You can then add view logic that displays a form with the list of cities, as well as the
results:

<form method="get" name="forecast">

 City List:
<select name="city">
<?php foreach ($cityLatLon as $latLon => $city) : ?>
<?php $select = ($currentLatLon == $latLon) ? ' selected' : ''; ?>
<option value="<?= urlencode($latLon) ?>" <?= $select ?>>
<?= $city ?></option>
<?php endforeach; ?>
</select>

<input type="submit" value="OK"></td>
</form>
<pre>
<?php var_dump($weather); ?>
</pre>

Here is the result, in a browser, of requesting the weather forecast for Cleveland, Ohio:

Accessing Web Services

250

See also
For a good discussion on the difference between SOAP and REST, refer to the article present
at http://stackoverflow.com/questions/209905/representational-state-
transfer-rest-and-simple-object-access-protocol-soap?lq=1.

Creating a simple SOAP server
As with the SOAP client, we can use the PHP SOAP extension to implement a SOAP server.
The most difficult part of the implementation will be generating the WSDL from the API class.
We do not cover that process here as there are a number of good WSDL generators available.

How to do it…
1.	 First, you need an API that will be handled by the SOAP server. For this example, we

define an Application\Web\Soap\ProspectsApi class that allows us to create,
read, update, and delete the prospects table:
namespace Application\Web\Soap;
use PDO;
class ProspectsApi
{
 protected $registerKeys;
 protected $pdo;

 public function __construct($pdo, $registeredKeys)
 {
 $this->pdo = $pdo;
 $this->registeredKeys = $registeredKeys;
 }
}

2.	 We then define methods that correspond to create, read, update, and delete.
In this example, the methods are named put(), get(), post(), and delete().
These, in turn, call methods that generate SQL requests that are executed from a
PDO instance. An example for get() is as follows:
public function get(array $request, array $response)
{
 if (!$this->authenticate($request)) return FALSE;
 $result = array();
 $id = $request[self::ID_FIELD] ?? 0;
 $email = $request[self::EMAIL_FIELD] ?? 0;
 if ($id > 0) {
 $result = $this->fetchById($id);

http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap?lq=1.
http://stackoverflow.com/questions/209905/representational-state-transfer-rest-and-simple-object-access-protocol-soap?lq=1.

Chapter 7

251

 $response[self::ID_FIELD] = $id;
 } elseif ($email) {
 $result = $this->fetchByEmail($email);
 $response[self::ID_FIELD] = $result[self::ID_FIELD] ?? 0;
 } else {
 $limit = $request[self::LIMIT_FIELD]
 ?? self::DEFAULT_LIMIT;
 $offset = $request[self::OFFSET_FIELD]
 ?? self::DEFAULT_OFFSET;
 $result = [];
 foreach ($this->fetchAll($limit, $offset) as $row) {
 $result[] = $row;
 }
 }
 $response = $this->processResponse(
 $result, $response, self::SUCCESS, self::ERROR);
 return $response;
 }

 protected function processResponse($result, $response,
 $success_code, $error_code)
 {
 if ($result) {
 $response['data'] = $result;
 $response['code'] = $success_code;
 $response['status'] = self::STATUS_200;
 } else {
 $response['data'] = FALSE;
 $response['code'] = self::ERROR_NOT_FOUND;
 $response['status'] = self::STATUS_500;
 }
 return $response;
 }

3.	 You can then generate a WSDL from your API. There are quite a few PHP-based WSDL
generators available (see the There's more… section). Most require that you add
phpDocumentor tags before the methods that will be published. In our example, the
two arguments are both arrays. Here is the full WSDL for the API discussed earlier:
<?xml version="1.0" encoding="UTF-8"?>
 <wsdl:definitions xmlns:tns="php7cookbook"
 targetNamespace="php7cookbook"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">

Accessing Web Services

252

 <wsdl:message name="getSoapIn">
 <wsdl:part name="request" type="tns:array" />
 <wsdl:part name="response" type="tns:array" />
 </wsdl:message>
 <wsdl:message name="getSoapOut">
 <wsdl:part name="return" type="tns:array" />
 </wsdl:message>
 <!—some nodes removed to conserve space -->
 <wsdl:portType name="CustomerApiSoap">
 <!—some nodes removed to conserve space -->
 <wsdl:binding name="CustomerApiSoap" type="tns:CustomerApiSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="rpc" />
 <wsdl:operation name="get">
 <soap:operation soapAction="php7cookbook#get" />
 <wsdl:input>
 <soap:body use="encoded" encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace="php7cookbook" parts="request response" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="encoded" encodingStyle=
 "http://schemas.xmlsoap.org/soap/encoding/"
 namespace="php7cookbook" parts="return" />
 </wsdl:output>
 </wsdl:operation>
 <!—some nodes removed to conserve space -->
 </wsdl:binding>
 <wsdl:service name="CustomerApi">
 <wsdl:port name="CustomerApiSoap"
 binding="tns:CustomerApiSoap">
 <soap:address location="http://localhost:8080/" />
 </wsdl:port>
 </wsdl:service>
 </wsdl:definitions>

4.	 Next, create a chap_07_simple_soap_server.php file, which will execute the
SOAP server. Start by defining the location of the WSDL and any other necessary files
(in this case, one for database configuration). If the wsdl parameter is set, deliver
the WSDL rather than attempting to process the request. In this example, we use
a simple API key to authenticate requests. We then create a SOAP server instance,
assign an instance of our API class, and run handle():

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');

Chapter 7

253

define('WSDL_FILENAME', __DIR__ . '/chap_07_wsdl.xml');

if (isset($_GET['wsdl'])) {
 readfile(WSDL_FILENAME);
 exit;
}
$apiKey = include __DIR__ . '/api_key.php';
require __DIR__ . '/../Application/Web/Soap/ProspectsApi.php';
require __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
use Application\Web\Soap\ProspectsApi;
$connection = new Application\Database\Connection(
 include __DIR__ . DB_CONFIG_FILE);
$api = new Application\Web\Soap\ProspectsApi(
 $connection->pdo, [$apiKey]);
$server = new SoapServer(WSDL_FILENAME);
$server->setObject($api);
echo $server->handle();

Depending on the settings for your php.ini file, you may need to disable the
WSDL cache, as follows:

ini_set('soap.wsdl_cache_enabled', 0);

If you have problems with incoming POST data, you can adjust this parameter
as follows:

ini_set('always_populate_raw_post_data', -1);

How it works…
You can easily test this recipe by first creating your target API class, and then generating
a WSDL. You can then use the built-in PHP webserver to deliver the SOAP service with this
command:

php -S localhost:8080 chap_07_simple_soap_server.php

You can then use the SOAP client discussed in the previous recipe to make a call to test the
SOAP service:

<?php
define('WSDL_URL', 'http://localhost:8080?wsdl=1');
$clientKey = include __DIR__ . '/api_key.php';
try {
 $client = new SoapClient(WSDL_URL);
 $response = [];

Accessing Web Services

254

 $email = some_email_generated_by_test;
 $email = 'test5393@unlikelysource.com';
 echo "\nGet Prospect Info for Email: " . $email . "\n";
 $request = ['token' => $clientKey, 'email' => $email];
 $result = $client->get($request,$response);
 var_dump($result);

} catch (SoapFault $e) {
 echo 'ERROR' . PHP_EOL;
 echo $e->getMessage() . PHP_EOL;
} catch (Throwable $e) {
 echo 'ERROR' . PHP_EOL;
 echo $e->getMessage() . PHP_EOL;
} finally {
 echo $client->__getLastResponse() . PHP_EOL;
}

Here is the output for email address test5393@unlikelysource.com:

Chapter 7

255

See also
A simple Google search for WSDL generators for PHP came back with easily a dozen results.
The one used to generate the WSDL for the ProspectsApi class was based on https://
code.google.com/archive/p/php-wsdl-creator/. For more information on
phpDocumentor, refer to the page at https://www.phpdoc.org/.

https://code.google.com/archive/p/php-wsdl-creator/
https://code.google.com/archive/p/php-wsdl-creator/
https://www.phpdoc.org/

257

8
Working with

Date/Time and
International Aspects

In this chapter, we will cover the following topics:

ff Using emoticons or emoji in a view script

ff Converting complex characters

ff Getting the locale from browser data

ff Formatting numbers by locale

ff Handling currency by locale

ff Formatting date/time by locale

ff Creating an HTML international calendar generator

ff Building a recurring events generator

ff Handling translation without gettext

Introduction
We will start this chapter with two recipes that take advantage of a new Unicode escape
syntax introduced with PHP 7. After that, we will cover how to determine a web visitor's locale
from browser data. The next few recipes will cover the creation of a locale class, which will
allow you to represent numbers, currency, dates, and time in a format specific to a locale.
Finally, we will cover recipes that demonstrate how to generate an internationalized calendar,
handle recurring events, and perform translation without having to use gettext.

Working with Date/Time and International Aspects

258

Using emoticons or emoji in a view script
The word emoticons is a composite of emotion and icon. Emoji, originating from Japan, is
another, larger, widely used set of icons. These icons are the little smiley faces, tiny ninjas,
and rolling-on-the-floor-laughing icons that are so popular on any website that has a social
networking aspect. Prior to PHP 7, however, producing these little beasties was an exercise in
frustration.

How to do it...
1.	 First and foremost, you need to know the Unicode for the icon you wish to present.

A quick search on the Internet will direct you to any one of several excellent charts.
Here are the codes for the three hear-no-evil, see-no-evil, and speak-no-evil monkey
icons:

U+1F648, U+1F649, and U+1F64A

2.	 Any Unicode output to the browser must be properly identified. This is most often
done by way of a meta tag. You should set the character set to UTF-8. Here is an
example:
<head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
</head>

3.	 The traditional approach was to simply use HTML to display the icons. Thus, you could
do something like this:
<table>
 <tr>
 <td>🙈</td>
 <td>🙉</td>
 <td>🙊</td>
 </tr>
</table>

Chapter 8

259

4.	 As of PHP 7, you can now construct full Unicode characters using this syntax:
"\u{xxx}". Here is an example with the same three icons as in the preceding bullet:

<table>
 <tr>
 <td><?php echo "\u{1F648}"; ?></td>
 <td><?php echo "\u{1F649}"; ?></td>
 <td><?php echo "\u{1F64A}"; ?></td>
 </tr>
</table>

Your operating system and browser must both support Unicode and must also
have the right set of fonts. In Ubuntu Linux, for example, you would need to
install the ttf-ancient-fonts package to see emoji in your browser.

How it works...
In PHP 7, a new syntax was introduced that lets you render any Unicode character. Unlike
other languages, the new PHP syntax allows for a variable number of hex digits. The basic
format is this:

\u{xxxx}

The entire construct must be double quoted (or use heredoc). xxxx could be any combination
of hex digits, 2, 4, 6, and above.

Create a file called chap_08_emoji_using_html.php. Be sure to include the meta tag
that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
 </head>

Next, set up a basic HTML table, and display a row of emoticons/emoji:

 <body>
 <table>
 <tr>
 <td>🙈</td>
 <td>🙉</td>
 <td>🙊</td>

Working with Date/Time and International Aspects

260

 </tr>
 </table>
 </body>
</html>

Now add a row using PHP to emit emoticons/emoji:

 <tr>
 <td><?php echo "\u{1F648}"; ?></td>
 <td><?php echo "\u{1F649}"; ?></td>
 <td><?php echo "\u{1F64A}"; ?></td>
 </tr>

Here is the output seen from Firefox:

See also
ff For a list of emoji codes, see http://unicode.org/emoji/charts/full-

emoji-list.html

Converting complex characters
The ability to access the entire Unicode character set opens up many new possibilities for
rendering complex characters, especially characters in alphabets other than Latin-1.

http://unicode.org/emoji/charts/full-emoji-list.html
http://unicode.org/emoji/charts/full-emoji-list.html

Chapter 8

261

How to do it...
1.	 Some languages are read right-to-left instead of left-to-right. Examples include

Hebrew and Arabic. In this example, we show you how to present reverse text using
the U+202E Unicode character for right-to-left override. The following line of code
prints txet desreveR:
echo "\u{202E}Reversed text";
echo "\u{202D}"; // returns output to left-to-right

Don't forget to invoke the left-to-right override character, U+202D, when
finished!

2.	 Another consideration is the use of composed characters. One such example is ñ
(the letter n with a tilde ~ floating above). This is used in words such as mañana
(the Spanish word for morning or tomorrow, depending on the context). There is a
composed character available, represented by Unicode code U+00F1. Here is an
example of its use, which echoes mañana:
echo "ma\u{00F1}ana"; // shows mañana

3.	 This could potentially impact search possibilities, however. Imagine that your
customers do not have a keyboard with this composed character. If they start to type
man in an attempt to search for mañana, they will be unsuccessful.

4.	 Having access to the full Unicode set offers other possibilities. Instead of using the
composed character, you can use a combination of the original letter n along with
the Unicode combining code, which places a floating tilde on top of the letter. In
this echo command, the output is the same as previously. Only the way the word is
formed differs:
echo "man\u{0303}ana"; // also shows mañana

5.	 A similar application could be made for accents. Consider the French word élève
(student). You could render it using composed characters, or by using combining
codes to float the accents above the letter. Consider the two following examples.
Both examples produce the same output, but are rendered differently:

echo "\u{00E9}l\u{00E8}ve";
echo "e\u{0301}le\u{0300}ve";

Working with Date/Time and International Aspects

262

How it works...
Create a file called chap_08_control_and_combining_unicode.php. Be sure to include
the meta tag that signals the browser that UTF-8 character encoding is being used:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
 </head>

Next, set up basic PHP and HTML to display the examples discussed previously:

 <body>
 <pre>
 <?php
 echo "\u{202E}Reversed text"; // reversed
 //echo "\u{202D}"; // stops reverse
 echo "mañana"; // using pre-composed characters
 echo "ma\u{00F1}ana"; // pre-composed character
 echo "man\u{0303}ana"; // "n" with combining ~ character
 (U+0303)
 echo "élève";
 echo "\u{00E9}l\u{00E8}ve"; // pre-composed characters
 echo "e\u{0301}le\u{0300}ve"; // e + combining characters
 ?>
 </pre>
</body>
</html>

Here is the output from a browser:

Chapter 8

263

Getting the locale from browser data
In order to improve the user experience on a website, it's important to display information
in a format that is acceptable in the user's locale. Locale is a generic term used to indicate
an area of the world. An effort in the I.T. community has been made to codify locales using a
two-part designation consisting of codes for both language and country. But when a person
visits your website, how do you know their locale? Probably the most useful technique involves
examining the HTTP language header.

How to do it...
1.	 In order to encapsulate locale functionality, we will assume a class, Application\

I18n\Locale. We will have this class extend an existing class, Locale, which is
part of the PHP Intl extension.

I18n is a common abbreviation for Internationalization. (Count the number
of letters!)

namespace Application\I18n;
use Locale as PhpLocale;
class Locale extends PhpLocale
{
 const FALLBACK_LOCALE = 'en';
 // some code
}

2.	 To get an idea of what an incoming request looks like, use phpinfo(INFO_
VARIABLES). Be sure to disable this function immediately after testing as it gives
away too much information to potential attackers:
<?php phpinfo(INFO_VARIABLES); ?>

Working with Date/Time and International Aspects

264

3.	 Locale information is stored in $_SERVER['HTTP_ACCEPT_LANGUAGE']. The value
will take this general form: ll-CC,rl;q=0.n, ll-CC,rl;q=0.n, as defined in
this table:

Abbreviation Meaning
ll Two-character lowercase code representing the language.
- Separates language from country in the locale code ll-CC.
CC Two-character uppercase code representing the country.
, Separates locale code from fallback root locale code (usually the

same as the language code).
rl Two-character lowercase code representing the suggested root

locale.
; Separates locale information from quality. If quality is missing,

default is q=1 (100%) probability; this is preferred.
q Quality.

0.n Some value between 0.00 and 1.0. Multiply this value by 100 to
get the percentage of probability that this is the actual language
preferred by this visitor.

4.	 There can easily be more than one locale listed. For example, the website visitor
could have multiple languages installed on their computer. It so happens that the
PHP Locale class has a method, acceptFromHttp(), which reads the Accept-
language header string and gives us the desired setting:
protected $localeCode;
public function setLocaleCode($acceptLangHeader)
{
 $this->localeCode =
 $this->acceptFromHttp($acceptLangHeader);
}

5.	 We can then define the appropriate getters. The get AcceptLanguage() method
returns the value from $_SERVER['HTTP_ACCEPT_LANGUAGE']:
public function getAcceptLanguage()
{
 return $_SERVER['HTTP_ACCEPT_LANGUAGE'] ??
 self::FALLBACK_LOCALE;
}
public function getLocaleCode()
{
 return $this->localeCode;
}

Chapter 8

265

6.	 Next we define a constructor that allows us to "manually" set the locale. Otherwise,
the locale information is drawn from the browser:
public function __construct($localeString = NULL)
{
 if ($localeString) {
 $this->setLocaleCode($localeString);
 } else {
 $this->setLocaleCode($this->getAcceptLanguage());
 }
}

7.	 Now comes the big decision: what to do with this information! This is covered in the
next few recipes.

Even though a visitor appears to accept one or more languages, that visitor
does not necessarily want contents in the language/locale indicated by their
browser. Accordingly, although you can certainly set the locale given this
information, you should also provide them with a static list of alternative
languages.

How it works...
In this illustration, let's take three examples:

ff information derived from the browser

ff a preset locale fr-FR

ff a string taken from RFC 2616: da, en-gb;q=0.8, en;q=0.7

Place the code from steps 1 to 6 into a file, Locale.php, which is in the Application\
I18n folder.

Next, create a file, chap_08_getting_locale_from_browser.php, which sets up
autoloading and uses the new class:

<?php
 require __DIR__ . '/../Application/Autoload/Loader.php';
 Application\Autoload\Loader::init(__DIR__ . '/..');
 use Application\I18n\Locale;

Now you can define an array with the three test locale strings:

$locale = [NULL, 'fr-FR', 'da, en-gb;q=0.8, en;q=0.7'];

Working with Date/Time and International Aspects

266

Finally, loop through the three locale strings, creating instances of the new class. Echo the
value returned from getLocaleCode() to see what choice was made:

echo '<table>';
foreach ($locale as $code) {
 $locale = new Locale($code);
 echo '<tr>
 <td>' . htmlspecialchars($code) . '</td>
 <td>' . $locale->getLocaleCode() . '</td>
 </tr>';
}
echo '</table>';

Here is the result (with a little bit of styling):

See also
ff For information on the PHP Locale class, see http://php.net/manual/en/

class.locale.php

ff For more information on the Accept-Language header, see section 14.4 of RFC
2616: https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Formatting numbers by locale
Numeric representations can vary by locale. As a simple example, in the UK one would see
the number three million, eighty thousand, five hundred and twelve, and ninety-two one
hundredths as follows:

3,080,512.92.

In France, however, the same number might appear like so:

3 080 512,92

http://php.net/manual/en/class.locale.php
http://php.net/manual/en/class.locale.php
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Chapter 8

267

How to do it...
Before you can represent a number in a locale-specific manner, you need to determine the
locale. This can be accomplished using the Application\I18n\Locale class discussed in
the previous recipe. The locale can be set manually or from header information.

1.	 Next, we will make use of the format() method of the NumberFormatter class,
to both output and parse numbers in a locale-specific format. First we add a property
that will contain an instance of the NumberFormatter class:
use NumberFormatter;
protected $numberFormatter;

Our initial thought would be to consider using the PHP function
setlocale() to produce numbers formatted according to locale. The
problem with this legacy approach, however, is that everything will be
considered based on this locale. This could introduce problems dealing with
data that is stored according to database specifications. Another issue with
setlocale() is that it is based on outdated standards, including RFC 1766
and ISO 639. Finally, setlocale() is highly dependent on operating system
locale support, which will make our code non-portable.

2.	 Normally, the next step would be to set $numberFormatter in the constructor.
The problem with this approach, in the case of our Application\I18n\
Locale class, is that we would end up with a top-heavy class, as we will also
need to perform currency and date formatting as well. Accordingly, we add a
getter that first checks to see whether an instance of NumberFormatter
has already been created. If not, an instance is created and returned. The first
argument in the new NumberFormatter is the locale code. The second argument,
NumberFormatter::DECIMAL, represents what type of formatting we need:
public function getNumberFormatter()
{
 if (!$this->numberFormatter) {
 $this->numberFormatter =
 new NumberFormatter($this->getLocaleCode(),
 NumberFormatter::DECIMAL);
 }
 return $this->numberFormatter;
}

3.	 We then add a method that, given any number, will produce a string that represents
that number formatted according to the locale:
public function formatNumber($number)
{
 return $this->getNumberFormatter()->format($number);
}

Working with Date/Time and International Aspects

268

4.	 Next we add a method that can be used to parse numbers according to the locale,
producing a native PHP numeric value. Please note that the result might not return
FALSE on parse failure depending on the server's ICU version:

public function parseNumber($string)
{
 $result = $this->getNumberFormatter()->parse($string);
 return ($result) ? $result : self::ERROR_UNABLE_TO_PARSE;
}

How it works...
Make the additions to the Application\I18n\Locale class as discussed in the preceding
bullet points. You can then create a chap_08_formatting_numbers.php file, which sets
up autoloading and uses this class:

<?php
 require __DIR__ . '/../Application/Autoload/Loader.php';
 Application\Autoload\Loader::init(__DIR__ . '/..');
 use Application\I18n\Locale;

For this illustration, create two Locale instances, one for the UK, the other for France. You
can also designate a large number to be used for testing:

 $localeFr = new Locale('fr_FR');
 $localeUk = new Locale('en_GB');
 $number = 1234567.89;
?>

Finally, you can wrap the formatNumber() and parseNumber() methods in the
appropriate HTML display logic and view the results:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" type="text/css"
 href="php7cookbook_html_table.css">
 </head>
 <body>
 <table>
 <tr>

Chapter 8

269

 <th>Number</th>
 <td>1234567.89</td>
 </tr>
 <tr>
 <th>French Format</th>
 <td><?= $localeFr->formatNumber($number); ?></td>
 </tr>
 <tr>
 <th>UK Format</th>
 <td><?= $localeUk->formatNumber($number); ?></td>
 </tr>
 <tr>
 <th>UK Parse French Number:
 <?= $localeFr->formatNumber($number) ?></th>
 <td><?= $localeUk->
 parseNumber($localeFr->formatNumber($number)); ?></td>
 </tr>
 <tr>
 <th>UK Parse UK Number:
 <?= $localeUk->formatNumber($number) ?></th>
 <td><?= $localeUk->
 parseNumber($localeUk->formatNumber($number)); ?></td>
 </tr>
 <tr>
 <th>FR Parse FR Number:
 <?= $localeFr->formatNumber($number) ?></th>
 <td><?= $localeFr->
 parseNumber($localeFr->formatNumber($number)); ?></td>
 </tr>
 <tr>
 <th>FR Parse UK Number:
 <?= $localeUk->formatNumber($number) ?></th>
 <td><?= $localeFr->
 parseNumber($localeUk->formatNumber($number)); ?></td>
 </tr>
 </table>
 </body>
</html>

Working with Date/Time and International Aspects

270

Here is the result as seen from a browser:

Note that if the locale is set to fr_FR, a UK formatted number, when parsed,
does not return the correct value. Likewise, when the locale is set to en_GB,
a French formatted number does not return the correct value upon parsing.
Accordingly, you might want to consider adding a validation check before
attempting to parse the number.

See also
ff For more information on the use and abuse of setlocale() please refer to this

page: http://php.net/manual/en/function.setlocale.php.

ff For a brief note on why number formatting will produce an error on some servers,
but not others, check the ICU (International Components for Unicode) version. See
the comments on this page: http://php.net/manual/en/numberformatter.
parse.php. For more info on ICU formatting, see http://userguide.icu-
project.org/formatparse.

Handling currency by locale
The technique for handling currency is similar to that for numbers. We will even use the same
NumberFormatter class! There is one major difference, however, and it is a show stopper: in
order to properly format currency, you will need to have on hand the currency code.

http://php.net/manual/en/function.setlocale.php
http://php.net/manual/en/numberformatter.parse.php
http://php.net/manual/en/numberformatter.parse.php
http://userguide.icu-project.org/formatparse
http://userguide.icu-project.org/formatparse

Chapter 8

271

How to do it...
1.	 The first order of business is to have the currency codes available in some format.

One possibility is to simply add the currency code as an Application\I18n\
Locale class constructor argument:
const FALLBACK_CURRENCY = 'GBP';
protected $currencyCode;
public function __construct($localeString = NULL,
 $currencyCode = NULL)
{
 // add this to the existing code:
 $this->currencyCode = $currencyCode ??
 self::FALLBACK_CURRENCY;
}

This approach, although obviously solid and workable, tends to fall into the
category called halfway measures or the easy way out! This approach would
also tend to eliminate full automation as the currency code is not available
from the HTTP header. As you have probably gathered from other recipes in
this book, we do not shy away from a more complex solution so, as the saying
goes, strap on your seat belts!

2.	 We will first need to establish some sort of lookup mechanism, where, given a
country code, we can obtain its predominant currency code. For this illustration, we
will use the Adapter software design pattern. According to this pattern, we should be
able to create different classes, which could potentially operate in entirely different
ways, but which produce the same result. Accordingly, we need to define the desired
result. For this purpose, we introduce a class, Application\I18n\IsoCodes. As
you can see, this class has all the pertinent properties, along with a sort-of universal
constructor:
namespace Application\I18n;
class IsoCodes
{
 public $name;
 public $iso2;
 public $iso3;
 public $iso_numeric;
 public $iso_3166;
 public $currency_name;
 public $currency_code;
 public $currency_number;
 public function __construct(array $data)
 {

Working with Date/Time and International Aspects

272

 $vars = get_object_vars($this);
 foreach ($vars as $key => $value) {
 $this->$key = $data[$key] ?? NULL;
 }
 }
}

3.	 Next we define an interface that has the method we require to perform the country-
code-to-currency-code lookup. In this case, we introduce Application\I18n\
IsoCodesInterface:
namespace Application\I18n;

interface IsoCodesInterface
{
 public function getCurrencyCodeFromIso2CountryCode($iso2)
 : IsoCodes;
}

4.	 Now we are ready to build a lookup adapter class, which we will call Application\
I18n\IsoCodesDb. It implements the abovementioned interface, and accepts
an Application\Database\Connection instance (see Chapter 1, Building
a Foundation), which is used to perform the lookup. The constructor sets up the
required information, including the connection, the lookup table name, and the
column that represents the ISO2 code. The lookup method required by the interface
then issues an SQL statement and returns an array, which is then used to build an
IsoCodes instance:
namespace Application\I18n;

use PDO;
use Application\Database\Connection;

class IsoCodesDb implements IsoCodesInterface
{
 protected $isoTableName;
 protected $iso2FieldName;
 protected $connection;
 public function __construct(Connection $connection,
 $isoTableName, $iso2FieldName)
 {
 $this->connection = $connection;
 $this->isoTableName = $isoTableName;
 $this->iso2FieldName = $iso2FieldName;
 }
 public function getCurrencyCodeFromIso2CountryCode($iso2)
 : IsoCodes

Chapter 8

273

 {
 $sql = sprintf('SELECT * FROM %s WHERE %s = ?',
 $this->isoTableName,
 $this->iso2FieldName);
 $stmt = $this->connection->pdo->prepare($sql);
 $stmt->execute([$iso2]);
 return new IsoCodes($stmt->fetch(PDO::FETCH_ASSOC);
 }
}

5.	 Now we turn our attention back to the Application\I18n\Locale class. We first
add a couple of new properties and class constants:
const ERROR_UNABLE_TO_PARSE = 'ERROR: Unable to parse';
const FALLBACK_CURRENCY = 'GBP';

protected $currencyFormatter;
protected $currencyLookup;
protected $currencyCode;

6.	 We add new method that retrieves the country code from the locale string. We can
leverage the getRegion() method, which comes from the PHP Locale class (which
we extend). Just in case it's needed, we also add a method, getCurrencyCode():
public function getCountryCode()
{
 return $this->getRegion($this->getLocaleCode());
}
public function getCurrencyCode()
{
 return $this->currencyCode;
}

7.	 As with formatting numbers, we define a getCurrencyFormatter(I),
much as we did getNumberFormatter() (shown previously). Notice that
$currencyFormatter is defined using NumberFormatter, but with a different
second parameter:
public function getCurrencyFormatter()
{
 if (!$this->currencyFormatter) {
 $this->currencyFormatter =
 new NumberFormatter($this->getLocaleCode(),
 NumberFormatter::CURRENCY);
 }
 return $this->currencyFormatter;
}

Working with Date/Time and International Aspects

274

8.	 We then add a currency code lookup to the class constructor if the lookup class has
been defined:
public function __construct($localeString = NULL,
 IsoCodesInterface $currencyLookup = NULL)
{
 // add this to the existing code:
 $this->currencyLookup = $currencyLookup;
 if ($this->currencyLookup) {
 $this->currencyCode =
 $this->currencyLookup
 ->getCurrencyCodeFromIso2CountryCode($this
 ->getCountryCode())
 ->currency_code;
 } else {
 $this->currencyCode = self::FALLBACK_CURRENCY;
 }
}

9.	 Then add the appropriate currency format and parse methods. Note that parsing
currency, unlike parsing numbers, will return FALSE if the parsing operation is not
successful:

public function formatCurrency($currency)
{
 return $this->getCurrencyFormatter()
 ->formatCurrency($currency, $this->currencyCode);
}
public function parseCurrency($string)
{
 $result = $this->getCurrencyFormatter()
 ->parseCurrency($string, $this->currencyCode);
 return ($result) ? $result : self::ERROR_UNABLE_TO_PARSE;
}

How it works...
Create the following classes, as covered in the first several bullet points:

Class Bullet point discussed
Application\I18n\IsoCodes 3
Application\I18n\IsoCodesInterface 4
Application\I18n\IsoCodesDb 5

Chapter 8

275

We will assume, for the purposes of this illustration, that we have a populated MySQL
database table, iso_country_codes, which has this structure:

CREATE TABLE `iso_country_codes` (
 `name` varchar(128) NOT NULL,
 `iso2` varchar(2) NOT NULL,
 `iso3` varchar(3) NOT NULL,
 `iso_numeric` int(11) NOT NULL AUTO_INCREMENT,
 `iso_3166` varchar(32) NOT NULL,
 `currency_name` varchar(32) DEFAULT NULL,
 `currency_code` char(3) DEFAULT NULL,
 `currency_number` int(4) DEFAULT NULL,
 PRIMARY KEY (`iso_numeric`)
) ENGINE=InnoDB AUTO_INCREMENT=895 DEFAULT CHARSET=utf8;

Make the additions to the Application\I18n\Locale class, as discussed in bullet points
6 to 9 previously. You can then create a chap_08_formatting_currency.php file, which
sets up autoloading and uses the appropriate classes:

<?php
define('DB_CONFIG_FILE', __DIR__ . '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\I18n\Locale;
use Application\I18n\IsoCodesDb;
use Application\Database\Connection;
use Application\I18n\Locale;

Next, we create instances of the Connection and IsoCodesDb classes:

$connection = new Connection(include DB_CONFIG_FILE);
$isoLookup = new IsoCodesDb($connection,
 'iso_country_codes', 'iso2');

For this illustration, create two Locale instances, one for the UK, the other for France. You
can also designate a large number to be used for testing:

$localeFr = new Locale('fr-FR', $isoLookup);
$localeUk = new Locale('en_GB', $isoLookup);
$number = 1234567.89;
?>

Working with Date/Time and International Aspects

276

Finally, you can wrap the formatCurrency() and parseCurrency() methods in the
appropriate HTML display logic and view the results. Base your view logic on that presented
in the How it works… section of the previous recipe (not repeated here to save trees!). Here is
the final output:

See also
ff The most up-to-date list of currency codes is maintained by ISO (International

Standards Organization). You can obtain this list in either XML or XLS (that is,
Microsoft Excel spreadsheet format). Here is the page where these lists can be
found: http://www.currency-iso.org/en/home/tables/table-a1.html.

Formatting date/time by locale
The formatting of date and time varies region to region. As a classic example, consider the
year 2016, month April, day 15 and a time in the evening. The format preferred by denizens
of the United States would be 7:23 PM, 4/15/2016, whereas in China you would most likely
see 2016-04-15 19:23. As mentioned with number and currency formatting, it would also be
important to display (and parse) dates in a format acceptable to your web visitors.

How to do it...
1.	 First of all, we need to modify Application\I18n\Locale, adding statements to

use date formatting classes:
use IntlCalendar;
use IntlDateFormatter;

http://www.currency-iso.org/en/home/tables/table-a1.html

Chapter 8

277

2.	 Next, we add a property to represent an IntlDateFormatter instance, as well as a
series of predefined constants:
const DATE_TYPE_FULL = IntlDateFormatter::FULL;
const DATE_TYPE_LONG = IntlDateFormatter::LONG;
const DATE_TYPE_MEDIUM = IntlDateFormatter::MEDIUM;
const DATE_TYPE_SHORT = IntlDateFormatter::SHORT;

const ERROR_UNABLE_TO_PARSE = 'ERROR: Unable to parse';
const ERROR_UNABLE_TO_FORMAT = 'ERROR: Unable to format date';
const ERROR_ARGS_STRING_ARRAY =
 'ERROR: Date must be string YYYY-mm-dd HH:ii:ss
 or array(y,m,d,h,i,s)';
const ERROR_CREATE_INTL_DATE_FMT =
 'ERROR: Unable to create international date formatter';

protected $dateFormatter;

3.	 After that, we are in a position to define a method, getDateFormatter(), which
returns an IntlDateFormatter instance. The value of $type matches one of the
DATE_TYPE_* constants defined previously:
public function getDateFormatter($type)
{
 switch ($type) {
 case self::DATE_TYPE_SHORT :
 $formatter = new IntlDateFormatter($this
 ->getLocaleCode(),
 IntlDateFormatter::SHORT,
 IntlDateFormatter::SHORT);
 break;
 case self::DATE_TYPE_MEDIUM :
 $formatter = new IntlDateFormatter($this
 ->getLocaleCode(),
 IntlDateFormatter::MEDIUM,
 IntlDateFormatter::MEDIUM);
 break;
 case self::DATE_TYPE_LONG :
 $formatter = new IntlDateFormatter($this
 ->getLocaleCode(),
 IntlDateFormatter::LONG,
 IntlDateFormatter::LONG);
 break;
 case self::DATE_TYPE_FULL :
 $formatter = new IntlDateFormatter($this
 ->getLocaleCode(),
 IntlDateFormatter::FULL,
 IntlDateFormatter::FULL);

Working with Date/Time and International Aspects

278

 break;
 default :
 throw new
InvalidArgumentException(self::ERROR_CREATE_INTL_DATE_FMT);
 }
 $this->dateFormatter = $formatter;
 return $this->dateFormatter;
}

4.	 Next we define a method that produces a locale formatted date. Defining the format
of the incoming $date is a bit tricky. It cannot be locale-specific, otherwise we will
need to parse it according to locale rules, with unpredictable results. A better strategy
would be to accept an array of values that represent year, month, day, and so on
as integers. As a fallback, we will accept a string but only in this format: YYYY-mm-
dd HH:ii:ss. Time zone is optional, and can be set separately. First we initialize
variables:
public function formatDate($date, $type, $timeZone = NULL)
{
 $result = NULL;
 $year = date('Y');
 $month = date('m');
 $day = date('d');
 $hour = 0;
 $minutes = 0;
 $seconds = 0;

5.	 After that we produce a breakdown of values that represent year, month, day, and so
on:
if (is_string($date)) {
 list($dateParts, $timeParts) = explode(' ', $date);
 list($year,$month,$day) = explode('-',$dateParts);
 list($hour,$minutes,$seconds) = explode(':',$timeParts);
} elseif (is_array($date)) {
 list($year,$month,$day,$hour,$minutes,$seconds) = $date;
} else {
 throw new InvalidArgumentException(self::ERROR_ARGS_STRING_
ARRAY);
}

6.	 Next we create an IntlCalendar instance, which will serve as an argument when
running format(). We set the date using the discreet integer values:
$intlDate = IntlCalendar::createInstance($timeZone,
 $this->getLocaleCode());
$intlDate->set($year,$month,$day,$hour,$minutes,$seconds);

Chapter 8

279

7.	 Finally, we obtain the date formatter instance, and produce the result:
 $formatter = $this->getDateFormatter($type);
 if ($timeZone) {
 $formatter->setTimeZone($timeZone);
 }
 $result = $formatter->format($intlDate);
 return $result ?? self::ERROR_UNABLE_TO_FORMAT;
}

8.	 The parseDate() method is actually simpler than formatting. The only complication
is what to do if the type is not specified (which will be the most likely case). All we
need to do is to loop through all possible types (of which there are only four) until a
result is produced:
public function parseDate($string, $type = NULL)
{
 if ($type) {
 $result = $this->getDateFormatter($type)->parse($string);
 } else {
 $tryThese = [self::DATE_TYPE_FULL,
 self::DATE_TYPE_LONG,
 self::DATE_TYPE_MEDIUM,
 self::DATE_TYPE_SHORT];
 foreach ($tryThese as $type) {
 $result = $this->getDateFormatter($type)->parse($string);
 if ($result) {
 break;
 }
 }
 }
 return ($result) ? $result : self::ERROR_UNABLE_TO_PARSE;
}

How it works...
Code the changes to Application\I18n\Locale, discussed previously. You can then
create a test file, chap_08_formatting_date.php, which sets up autoloading, and creates
two instances of the Locale class, one for the USA, the other for France:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\I18n\Locale;

$localeFr = new Locale('fr-FR');
$localeUs = new Locale('en_US');
$date = '2016-02-29 17:23:58';
?>

Working with Date/Time and International Aspects

280

Next, with suitable styling, run a test of formatDate() and parseDate():

echo $localeFr->formatDate($date, Locale::DATE_TYPE_FULL);
echo $localeUs->formatDate($date, Locale::DATE_TYPE_MEDIUM);
$localeUs->parseDate($localeFr->formatDate($date, Locale::DATE_TYPE_
MEDIUM));
// etc.

An example of the output is shown here:

See also
ff ISO 8601 gives precise definitions for all aspects of date and time. There is also

an RFC that discusses the impact of ISO 8601 on the Internet. For reference, see
https://tools.ietf.org/html/rfc3339. For a good overview of date formats
by country, see https://en.wikipedia.org/wiki/Date_format_by_
country.

Creating an HTML international calendar
generator

Creating a program to display a calendar is something you would most likely do as a student
at secondary school. A nested for() loop, where the inside loop generates a list of seven
days, will generally suffice. Even the problem of how many days there are in the month is
easily solved in the form of a simple array. Where it starts to get tricky is when you need
to figure out, for any given year, on what day of the week does the 1st of January fall. Also,
what if you want to represent the months and days of the week in a language and format
acceptable to a specific locale? As you have probably guessed, we will build a solution using
the previously discussed Application\I18n\Locale class.

https://tools.ietf.org/html/rfc3339
https://en.wikipedia.org/wiki/Date_format_by_country
https://en.wikipedia.org/wiki/Date_format_by_country

Chapter 8

281

How to do it...
1.	 First we need to create a generic class that will hold information for a single day.

Initially it will only hold an integer value, $dayOfMonth. Later, in the next recipe,
we'll expand it to include events. As the primary purpose of this class will be to yield
$dayOfMonth, we'll incorporate this value into its constructor, and define
__invoke() to return this value as well:
namespace Application\I18n;

class Day
{
 public $dayOfMonth;
 public function __construct($dayOfMonth)
 {
 $this->dayOfMonth = $dayOfMonth;
 }
 public function __invoke()
 {
 return $this->dayOfMonth ?? '';
 }
}

2.	 Create a new class that will hold the appropriate calendar-generation methods. It
will accept an instance of Application\I18n\Locale, and will define a couple
of class constants and properties. The format codes, such as EEEEE and MMMM, are
drawn from ICU date formats:
namespace Application\I18n;

use IntlCalendar;

class Calendar
{

 const DAY_1 = 'EEEEE'; // T
 const DAY_2 = 'EEEEEE'; // Tu
 const DAY_3 = 'EEE'; // Tue
 const DAY_FULL = 'EEEE'; // Tuesday
 const MONTH_1 = 'MMMMM'; // M
 const MONTH_3 = 'MMM'; // Mar
 const MONTH_FULL = 'MMMM'; // March
 const DEFAULT_ACROSS = 3;
 const HEIGHT_FULL = '150px';
 const HEIGHT_SMALL = '60px';

Working with Date/Time and International Aspects

282

 protected $locale;
 protected $dateFormatter;
 protected $yearArray;
 protected $height;

 public function __construct(Locale $locale)
 {
 $this->locale = $locale;
 }

 // other methods are discussed in the following bullets

}

3.	 Then we define a method that returns an IntlDateFormatter instance from our
locale class. This is stored in a class property, as it will be used frequently:
protected function getDateFormatter()
{
 if (!$this->dateFormatter) {
 $this->dateFormatter =
 $this->locale->getDateFormatter(Locale::DATE_TYPE_FULL);
 }
 return $this->dateFormatter;
}

4.	 Next we define a core method, buildMonthArray(), which creates a multi-
dimensional array where the outer key is the week of the year, and the inner array is
seven elements representing the days of the week. We accept the year, month, and
optional time zone as arguments. Note, as part of variable initialization, we subtract
1 from the month. This is because the IntlCalendar::set() method expects a
0-based value for the month, where 0 represents January, 1 is February, and so on:
public function buildMonthArray($year, $month, $timeZone =
 NULL)
{
$month -= 1;
//IntlCalendar months are 0 based; Jan==0, Feb==1 and so on
 $day = 1;
 $first = TRUE;
 $value = 0;
 $monthArray = array();

Chapter 8

283

5.	 We then create an IntlCalendar instance, and use it to determine how many days
are in this month:
$cal = IntlCalendar::createInstance(
 $timeZone, $this->locale->getLocaleCode());
$cal->set($year, $month, $day);
$maxDaysInMonth = $cal
 ->getActualMaximum(IntlCalendar::FIELD_DAY_OF_MONTH);

6.	 After that we use our IntlDateFormatter instance to determine what day of the
week equates to the 1st of this month. After that, we set the pattern to w, which will
subsequently give us the week number:
$formatter = $this->getDateFormatter();
$formatter->setPattern('e');
$firstDayIsWhatDow = $formatter->format($cal);

7.	 We are now ready to loop through all days in the month with nested loops. An
outer while() loop ensures we don't go past the end of the month. The inner
loop represents the days of the week. You will note that we take advantage of
IntlCalendar::get(), which allows us to retrieve values from a wide range of
predefined fields. We also adjust the week of the year value to 0 if it exceeds 52:
while ($day <= $maxDaysInMonth) {
 for ($dow = 1; $dow <= 7; $dow++) {
 $cal->set($year, $month, $day);
 $weekOfYear = $cal
 ->get(IntlCalendar::FIELD_WEEK_OF_YEAR);
 if ($weekOfYear > 52) $weekOfYear = 0;

8.	 We then check to see whether $first is still set TRUE. If so, we start adding day
numbers to the array. Otherwise, the array value is set to NULL. We then close all
open statements and return the array. Note that we also need to make sure the
inner loop doesn't go past the number of days in the month, hence the extra if()
statement in the outer else clause.

Note that instead of just storing the value for the day of the month, we use the
newly defined Application\I18n\Day class.

 if ($first) {
 if ($dow == $firstDayIsWhatDow) {
 $first = FALSE;
 $value = $day++;
 } else {
 $value = NULL;
 }
 } else {

Working with Date/Time and International Aspects

284

 if ($day <= $maxDaysInMonth) {
 $value = $day++;
 } else {
 $value = NULL;
 }
 }
 $monthArray[$weekOfYear][$dow] = new Day($value);
 }
 }
 return $monthArray;
}

Refining internationalized output
1.	 First, a series of small methods, starting with one that extracts the internationally

formatted day based on type. The type determines whether we deliver the full name
of the day, an abbreviation, or just a single letter, all appropriate for that locale:
protected function getDay($type, $cal)
{
 $formatter = $this->getDateFormatter();
 $formatter->setPattern($type);
 return $formatter->format($cal);
}

2.	 Next we need a method that returns an HTML row of day names, calling the newly
defined getDay() method. As mentioned previous, the type dictates the appearance
of the days:
protected function getWeekHeaderRow($type, $cal, $year, $month,
$week)
{
 $output = '<tr>';
 $width = (int) (100/7);
 foreach ($week as $day) {
 $cal->set($year, $month, $day());
 $output .= '<th style="vertical-align:top;"
 width="' . $width . '%">'
 . $this->getDay($type, $cal) . '</th>';
 }
 $output .= '</tr>' . PHP_EOL;
 return $output;
}

Chapter 8

285

3.	 After that, we define a very simple method to return a row of week dates. Note that
we take advantage of Day::__invoke() using: $day():
protected function getWeekDaysRow($week)
{
 $output = '<tr style="height:' . $this->height . ';">';
 $width = (int) (100/7);
 foreach ($week as $day) {
 $output .= '<td style="vertical-align:top;"
 width="' . $width . '%">'
 . $day() . '</td>';
 }
 $output .= '</tr>' . PHP_EOL;
 return $output;
}

4.	 And finally, a method that puts the smaller methods together to generate a calendar
for a single month. First we build the month array, but only if $yearArray is not
already available:
public function calendarForMonth($year,
 $month,
 $timeZone = NULL,
 $dayType = self::DAY_3,
 $monthType = self::MONTH_FULL,
 $monthArray = NULL)
{
 $first = 0;
 if (!$monthArray)
 $monthArray = $this->yearArray[$year][$month]
 ?? $this->buildMonthArray($year, $month, $timeZone);

5.	 The month needs to be decremented by 1 as IntlCalendar months are 0-based:
Jan = 0, Feb = 1, and so on. We then build an IntlCalendar instance using the
time zone (if any), and the locale. We next create a IntlDateFormatter instance
to retrieve the month name and other information according to locale:
 $month--;
 $cal = IntlCalendar::createInstance(
 $timeZone, $this->locale->getLocaleCode());
 $cal->set($year, $month, 1);
 $formatter = $this->getDateFormatter();
 $formatter->setPattern($monthType);

Working with Date/Time and International Aspects

286

6.	 We then loop through the month array, and call the smaller methods just mentioned
to build the final output:
 $this->height = ($dayType == self::DAY_FULL)
 ? self::HEIGHT_FULL : self::HEIGHT_SMALL;
 $html = '<h1>' . $formatter->format($cal) . '</h1>';
 $header = '';
 $body = '';
 foreach ($monthArray as $weekNum => $week) {
 if ($first++ == 1) {
 $header .= $this->getWeekHeaderRow(
 $dayType, $cal, $year, $month, $week);
 }
 $body .= $this->getWeekDaysRow($dayType, $week);
 }
 $html .= '<table>' . $header . $body .
 '</table>' . PHP_EOL;
 return $html;
}

7.	 In order to generate a calendar for the entire year, it's a simple matter of looping
through months 1 to 12. To facilitate outside access, we first define a method that
builds a year array:
public function buildYearArray($year, $timeZone = NULL)
{
 $this->yearArray = array();
 for ($month = 1; $month <= 12; $month++) {
 $this->yearArray[$year][$month] =
 $this->buildMonthArray($year, $month, $timeZone);
 }
 return $this->yearArray;
}

public function getYearArray()
{
 return $this->yearArray;
}

8.	 To generate a calendar for a year, we define a method, calendarForYear().
If the year array has not been build, we call buildYearArray(). We take into
account how many monthly calendars we wish to display across and then call
calendarForMonth():
public function calendarForYear($year,
 $timeZone = NULL,
 $dayType = self::DAY_1,

Chapter 8

287

 $monthType = self::MONTH_3,
 $across = self::DEFAULT_ACROSS)
{
 if (!$this->yearArray) $this->buildYearArray($year,
 $timeZone);
 $yMax = (int) (12 / $across);
 $width = (int) (100 / $across);
 $output = '<table>' . PHP_EOL;
 $month = 1;
 for ($y = 1; $y <= $yMax; $y++) {
 $output .= '<tr>';
 for ($x = 1; $x <= $across; $x++) {
 $output .= '<td style="vertical-align:top;"
 width="' . $width . '%">'
 . $this->calendarForMonth($year, $month,
 $timeZone, $dayType, $monthType,
 $this->yearArray[$year][$month++]) . '</td>';
 }
 $output .= '</tr>' . PHP_EOL;
 }
 $output .= '</table>';
 return $output;
}

How it works...
First of all, make sure you build the Application\I18n\Locale class as defined in the
previous recipe. After that, create a new file, Calendar.php, in the Application\I18n
folder, with all the methods described in this recipe.

Next, define a calling program, chap_08_html_calendar.php, which sets up autoloading
and creates Locale and Calendar instances. Also be sure to define the year and month:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\I18n\Locale;
use Application\I18n\Calendar;

$localeFr = new Locale('fr-FR');
$localeUs = new Locale('en_US');
$localeTh = new Locale('th_TH');
$calendarFr = new Calendar($localeFr);
$calendarUs = new Calendar($localeUs);
$calendarTh = new Calendar($localeTh);
$year = 2016;
$month = 1;
?>

Working with Date/Time and International Aspects

288

You can then develop appropriate view logic to display the different calendars. For example,
you can include parameters to display the full month and day names:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
 <link rel="stylesheet" type="text/css"
 href="php7cookbook_html_table.css">
 </head>
 <body>
 <h3>Year: <?= $year ?></h3>
 <?= $calendarFr->calendarForMonth($year, $month, NULL,
 Calendar::DAY_FULL); ?>
 <?= $calendarUs->calendarForMonth($year, $month, NULL,
 Calendar::DAY_FULL); ?>
 <?= $calendarTh->calendarForMonth($year, $month, NULL,
 Calendar::DAY_FULL); ?>
 </body>
</html>

With a couple of modifications, you can also display a calendar for the entire year:

$localeTh = new Locale('th_TH');
$localeEs = new Locale('es_ES');
$calendarTh = new Calendar($localeTh);

Chapter 8

289

$calendarEs = new Calendar($localeEs);
$year = 2016;
echo $calendarTh->calendarForYear($year);
echo $calendarEs->calendarForYear($year);

Here is the browser output showing a full year calendar in Spanish:

See also
ff For more information on codes used by IntlDateFormatter::setPattern(),

see this article: http://userguide.icu-project.org/formatparse/
datetime

Building a recurring events generator
A very common need related to generating a calendar is the scheduling of events. Events can
be in the form of one-off events, which take place on one day, or on a weekend. There is a
much greater need, however, to track events that are recurring. We need to account for the
start date, the recurring interval (daily, weekly, monthly), and the number of occurrences or a
specific end date.

http://userguide.icu-project.org/formatparse/datetime
http://userguide.icu-project.org/formatparse/datetime

Working with Date/Time and International Aspects

290

How to do it...
1.	 Before anything else, it would be an excellent idea to create a class that represents

an event. Ultimately you'll probably end up storing the data in such a class in a
database. For this illustration, however, we will simply define the class, and leave the
database aspect to your imagination. You will notice that we will use a number of
classes included in the DateTime extension admirably suited to event generation:
namespace Application\I18n;

use DateTime;
use DatePeriod;
use DateInterval;
use InvalidArgumentException;

class Event
{
 // code
}

2.	 Next, we define a series of useful class constants and properties. You will notice that
we defined most of the properties public in order to economize on the number of
getters and setters needed. The intervals are defined as sprintf() format strings;
%d will be substituted for a value:
const INTERVAL_DAY = 'P%dD';
const INTERVAL_WEEK = 'P%dW';
const INTERVAL_MONTH = 'P%dM';
const FLAG_FIRST = 'FIRST'; // 1st of the month
const ERROR_INVALID_END = 'Need to supply either # occurrences or
an end date';
const ERROR_INVALID_DATE = 'String i.e. YYYY-mm-dd or DateTime
instance only';
const ERROR_INVALID_INTERVAL = 'Interval must take the form "P\
d+(D | W | M)"';

public $id;
public $flag;
public $value;
public $title;
public $locale;
public $interval;
public $description;
public $occurrences;
public $nextDate;
protected $endDate;
protected $startDate;

Chapter 8

291

3.	 Next we turn our attention to the constructor. We need to collect and set all
information pertinent to an event. The variable names are self-explanatory.

$value is not quite so clear. This parameter will ultimately be substituted
for the value in the interval format string. So, for example, if the user selects
$interval as INTERVAL_DAY, and $value as 2, the resulting interval
string will be P2D, which means every other day (or every 2nd day).

public function __construct($title,
 $description,
 $startDate,
 $interval,
 $value,
 $occurrences = NULL,
 $endDate = NULL,
 $flag = NULL)
{

4.	 We then initialize variables. Note that the ID is pseudo-randomly generated, but might
ultimately end up being the primary key in a database events table. Here we use
md5() not for security purposes, but rather to quickly generate a hash so that IDs
have a consistent appearance:
$this->id = md5($title . $interval . $value) . sprintf('%04d',
rand(0,9999));
$this->flag = $flag;
$this->value = $value;
$this->title = $title;
$this->description = $description;
$this->occurrences = $occurrences;

5.	 As mentioned previously, the interval parameter is a sprintf() pattern used to
construct a proper DateInterval instance:
try {
 $this->interval = new DateInterval(sprintf($interval, $value));
 } catch (Exception $e) {
 error_log($e->getMessage());
 throw new InvalidArgumentException(self::ERROR_INVALID_
INTERVAL);
}

Working with Date/Time and International Aspects

292

6.	 To initialize $startDate, we call stringOrDate(). We then attempt
to generate a value for $endDate by calling either stringOrDate() or
calcEndDateFromOccurrences(). If we have neither an end date nor a number
of occurrences, an exception is thrown:
 $this->startDate = $this->stringOrDate($startDate);
 if ($endDate) {
 $this->endDate = $this->stringOrDate($endDate);
 } elseif ($occurrences) {
 $this->endDate = $this->calcEndDateFromOccurrences();
 } else {
 throw new InvalidArgumentException(self::ERROR_INVALID_END);
 }
 $this->nextDate = $this->startDate;
}

7.	 The stringOrDate() method consists of a few lines of code that check the data
type of the date variable, and return a DateTime instance or NULL:
protected function stringOrDate($date)
{
 if ($date === NULL) {
 $newDate = NULL;
 } elseif ($date instanceof DateTime) {
 $newDate = $date;
 } elseif (is_string($date)) {
 $newDate = new DateTime($date);
 } else {
 throw new InvalidArgumentException(self::ERROR_INVALID_END);
 }
 return $newDate;
}

8.	 We call the calcEndDateFromOccurrences() method from the constructor
if $occurrences is set so that we'll know the end date for this event. We take
advantage of the DatePeriod class, which provides an iteration based on a start
date, DateInterval, and number of occurrences:
protected function calcEndDateFromOccurrences()
{
 $endDate = new DateTime('now');
 $period = new DatePeriod(
$this->startDate, $this->interval, $this->occurrences);
 foreach ($period as $date) {
 $endDate = $date;
 }
 return $endDate;
}

Chapter 8

293

9.	 Next we throw in a __toString() magic method, which simple echoes the title of
the event:
public function __toString()
{
 return $this->title;
}

10.	 The last method we need to define for our Event class is getNextDate(), which is
used when generating a calendar:
public function getNextDate(DateTime $today)
{
 if ($today > $this->endDate) {
 return FALSE;
 }
 $next = clone $today;
 $next->add($this->interval);
 return $next;
}

11.	 Next we turn our attention to the Application\I18n\Calendar class described in
the previous recipe. With a bit of minor surgery, we are ready to tie our newly defined
Event class into the calendar. First we add a new property, $events, and a method
to add events in the form of an array. We use the Event::$id property to make sure
events are merged and not overwritten:
protected $events = array();
public function addEvent(Event $event)
{
 $this->events[$event->id] = $event;
}

12.	 Next we add a method, processEvents(), which adds an Event instance to a Day
object when building the year calendar. First we check to see whether there are any
events, and whether or not the Day object is NULL. As you may recall, it's likely that
the first day of the month doesn't fall on the first day of the week, and thus the need
to set the value of a Day object to NULL. We certainly do not want to add events to
a non-operative day! We then call Event::getNextDate() and see whether the
dates match. If so, we store the Event into Day::$events[] and set the next date
on the Event object:
protected function processEvents($dayObj, $cal)
{
 if ($this->events && $dayObj()) {
 $calDateTime = $cal->toDateTime();
 foreach ($this->events as $id => $eventObj) {
 $next = $eventObj->getNextDate($eventObj->nextDate);

Working with Date/Time and International Aspects

294

 if ($next) {
 if ($calDateTime->format('Y-m-d') ==
 $eventObj->nextDate->format('Y-m-d')) {
 $dayObj->events[$eventObj->id] = $eventObj;
 $eventObj->nextDate = $next;
 }
 }
 }
 }
 return $dayObj;
}

Note that we do not do a direct comparison of the two objects. Two
reasons for this: first of all, one is a DateTime instance, the other is
an IntlCalendar instance. The other, more compelling reason, is
that it's possible that hours:minutes:seconds were included when the
DateTime instance was obtained, resulting in actual value differences
between the two objects.

13.	 Now we need to add a call to processEvents() in the buildMonthArray()
method so that it looks like this:
 while ($day <= $maxDaysInMonth) {
 for ($dow = 1; $dow <= 7; $dow++) {
 // add this to the existing code:
 $dayObj = $this->processEvents(new Day($value), $cal);
 $monthArray[$weekOfYear][$dow] = $dayObj;
 }
 }

14.	 Finally, we need to modify getWeekDaysRow(), adding the necessary code to
output event information inside the box along with the date:

protected function getWeekDaysRow($type, $week)
{
 $output = '<tr style="height:' . $this->height . ';">';
 $width = (int) (100/7);
 foreach ($week as $day) {
 $events = '';
 if ($day->events) {
 foreach ($day->events as $single) {
 $events .= '
' . $single->title;
 if ($type == self::DAY_FULL) {
 $events .= '
<i>' . $single->description . '</i>';
 }

Chapter 8

295

 }
 }
 $output .= '<td style="vertical-align:top;"
 width="' . $width . '%">'
 . $day() . $events . '</td>';
 }
 $output .= '</tr>' . PHP_EOL;
 return $output;
}

How it works...
To tie events to the calendar, first code the Application\I18n\Event class described in
steps 1 to 10. Next, modify Application\I18n\Calendar as described in steps 11 to
14. You can then create a test script, chap_08_recurring_events.php, which sets up
autoloading and creates Locale and Calendar instances. For the purposes of illustration,
go ahead and use 'es_ES' as a locale:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\I18n\ { Locale, Calendar, Event };

try {
 $year = 2016;
 $localeEs = new Locale('es_ES');
 $calendarEs = new Calendar($localeEs);

Now we can start defining and adding events to the calendar. The first example adds an event
that lasts 3 days and starts on 8 January 2016:

 // add event: 3 days
 $title = 'Conf';
 $description = 'Special 3 day symposium on eco-waste';
 $startDate = '2016-01-08';
 $event = new Event($title, $description, $startDate,
 Event::INTERVAL_DAY, 1, 2);
 $calendarEs->addEvent($event);

Working with Date/Time and International Aspects

296

Here is another example, an event that occurs on the first of every month until
September 2017:

 $title = 'Pay Rent';
 $description = 'Sent rent check to landlord';
 $startDate = new DateTime('2016-02-01');
 $event = new Event($title, $description, $startDate,
 Event::INTERVAL_MONTH, 1, '2017-09-01', NULL, Event::FLAG_FIRST);
 $calendarEs->addEvent($event);

You can then add sample weekly, bi-weekly, monthly, and so on events as desired. You can
then close the try…catch block, and produce suitable display logic:

} catch (Throwable $e) {
 $message = $e->getMessage();
}
?>
<!DOCTYPE html>
<head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
 <link rel="stylesheet" type="text/css" href="php7cookbook_html_
table.css">
</head>
<body>
<h3>Year: <?= $year ?></h3>
<?= $calendarEs->calendarForYear($year, 'Europe/Berlin',
 Calendar::DAY_3, Calendar::MONTH_FULL, 2); ?>
<?= $calendarEs->calendarForMonth($year, 1 , 'Europe/Berlin',
 Calendar::DAY_FULL); ?>
</body>
</html>

Chapter 8

297

Here is the output showing the first few months of the year:

See also
ff For more information on IntlCalendar field constants that can be used with

get(), please refer to this page: http://php.net/manual/en/class.
intlcalendar.php#intlcalendar.constants

Handling translation without gettext
Translation is an important part of making your website accessible to an international
customer base. One way this is accomplished it to use the PHP gettext functions, which are
based on the GNU gettext operating system tools installed on the local server. gettext
is well documented and well supported, but uses a legacy approach and has distinct
disadvantages. Accordingly, in this recipe, we present an alternative approach to translation
where you can build your own adapter.

http://php.net/manual/en/class.intlcalendar.php#intlcalendar.constants
http://php.net/manual/en/class.intlcalendar.php#intlcalendar.constants

Working with Date/Time and International Aspects

298

Something important to recognize is that the programmatic translation tools available to PHP
are primarily designed to provide limited translation of a word or phrase, referred to as the
msgid (message ID). The translated equivalent is referred to as the msgstr (message string).
Accordingly, incorporating translation typically only involves relatively unchanging items such
as menus, forms, error or success messages, and so on. For the purposes of this recipe, we
will assume that you have the actual web page translations stored as blocks of text.

If you need to translate entire pages of content, you might consider using the
Google Translate API. This is, however, a paid service. Alternatively, you could
outsource the translation to individuals with multi-lingual skills cheaply using
Amazon Mechanical Turk. See the See Also section at the end of this recipe
for the URLs.

How to do it...
1.	 We will once again use the Adapter software design pattern, in this case to provide

alternatives to the translation source. In this recipe, we will demonstrate adapters for
.ini files, .csv files, and databases.

2.	 To begin, we will define an interface that will later be used to identify a translation
adapter. The requirements for a translation adapter are quite simple, we only need to
return a message string for a given message ID:
namespace Application\I18n\Translate\Adapter;
interface TranslateAdapterInterface
{
 public function translate($msgid);
}

3.	 Next we define a trait that matches the interface. The trait will contain the actual
code required. Note that if we fail to find the message string, we simply return the
message ID:
namespace Application\I18n\Translate\Adapter;

trait TranslateAdapterTrait
{
 protected $translation;
 public function translate($msgid)
 {
 return $this->translation[$msgid] ?? $msgid;
 }
}

Chapter 8

299

4.	 Now we're ready to define our first adapter. In this recipe, we'll start with an adapter
that uses an .ini file as the source of translations. The first thing you'll notice is
that we use the trait defined previously. The constructor method will vary between
adapters. In this case, we use parse_ini_file() to produce an array of key/
value pairs where the key is the message ID. Notice that we use the $filePattern
parameter to substitute the locale, which then allows us to load the appropriate
translation file:
namespace Application\I18n\Translate\Adapter;

use Exception;
use Application\I18n\Locale;

class Ini implements TranslateAdapterInterface
{
 use TranslateAdapterTrait;
 const ERROR_NOT_FOUND = 'Translation file not found';
 public function __construct(Locale $locale, $filePattern)
 {
 $translateFileName = sprintf($filePattern,
 $locale->getLocaleCode());
 if (!file_exists($translateFileName)) {
 error_log(self::ERROR_NOT_FOUND . ':' . $translateFileName);
 throw new Exception(self::ERROR_NOT_FOUND);
 } else {
 $this->translation = parse_ini_file($translateFileName);
 }
 }
}

5.	 The next adapter, Application\I18n\Translate\Adapter\Csv, is identical,
except that we open the translation file and loop through using fgetcsv() to
retrieve the message ID / message string key pairs. Here we show only the difference
in the constructor:
public function __construct(Locale $locale, $filePattern)
{
 $translateFileName = sprintf($filePattern,
 $locale->getLocaleCode());
 if (!file_exists($translateFileName)) {
 error_log(self::ERROR_NOT_FOUND . ':' . $translateFileName);
 throw new Exception(self::ERROR_NOT_FOUND);
 } else {
 $fileObj = new SplFileObject($translateFileName, 'r');
 while ($row = $fileObj->fgetcsv()) {
 $this->translation[$row[0]] = $row[1];

Working with Date/Time and International Aspects

300

 }
 }
}

The big disadvantage of both of these adapters is that we need to preload
the entire translation set, which puts a strain on memory if there is a large
number of translations. Also, the translation file needs to be opened and
parsed, which drags down performance.

6.	 We now present the third adapter, which performs a database lookup and avoids the
problems of the other two adapters. We use a PDO prepared statement which is sent
to the database in the beginning, and only one time. We then execute as many times
as needed, supplying the message ID as an argument. You will also notice that we
needed to override the translate() method defined in the trait. Finally, you might
have noticed the use of PDOStatement::fetchColumn() as we only need the one
value:
namespace Application\I18n\Translate\Adapter;

use Exception;
use Application\Database\Connection;
use Application\I18n\Locale;

class Database implements TranslateAdapterInterface
{
 use TranslateAdapterTrait;
 protected $connection;
 protected $statement;
 protected $defaultLocaleCode;
 public function __construct(Locale $locale,
 Connection $connection,
 $tableName)
 {
 $this->defaultLocaleCode = $locale->getLocaleCode();
 $this->connection = $connection;
 $sql = 'SELECT msgstr FROM ' . $tableName
 . ' WHERE localeCode = ? AND msgid = ?';
 $this->statement = $this->connection->pdo->prepare($sql);
 }
 public function translate($msgid, $localeCode = NULL)
 {
 if (!$localeCode) $localeCode = $this->defaultLocaleCode;
 $this->statement->execute([$localeCode, $msgid]);
 return $this->statement->fetchColumn();
 }
}

Chapter 8

301

7.	 We are now ready to define the core Translation class, which is tied to one (or
more) adapters. We assign a class constant to represent the default locale, and
properties for the locale, adapter, and text file pattern (explained later):
namespace Application\I18n\Translate;

use Application\I18n\Locale;
use Application\I18n\Translate\Adapter\TranslateAdapterInterface;

class Translation
{
 const DEFAULT_LOCALE_CODE = 'en_GB';
 protected $defaultLocaleCode;
 protected $adapter = array();
 protected $textFilePattern = array();

8.	 In the constructor, we determine the locale, and set the initial adapter to this locale.
In this manner, we are able to host multiple adapters:
public function __construct(TranslateAdapterInterface $adapter,
 $defaultLocaleCode = NULL,
 $textFilePattern = NULL)
{
 if (!$defaultLocaleCode) {
 $this->defaultLocaleCode = self::DEFAULT_LOCALE_CODE;
 } else {
 $this->defaultLocaleCode = $defaultLocaleCode;
 }
 $this->adapter[$this->defaultLocaleCode] = $adapter;
 $this->textFilePattern[$this->defaultLocaleCode] =
$textFilePattern;
}

9.	 Next we define a series of setters, which gives us more flexibility:
public function setAdapter($localeCode, TranslateAdapterInterface
$adapter)
{
 $this->adapter[$localeCode] = $adapter;
}
public function setDefaultLocaleCode($localeCode)
{
 $this->defaultLocaleCode = $localeCode;
}
public function setTextFilePattern($localeCode, $pattern)
{
 $this->textFilePattern[$localeCode] = $pattern;
}

Working with Date/Time and International Aspects

302

10.	 We then define the PHP magic method __invoke(), which lets us make a direct call
to the translator instance, returning the message string given the message ID:
public function __invoke($msgid, $locale = NULL)
{
 if ($locale === NULL) $locale = $this->defaultLocaleCode;
 return $this->adapter[$locale]->translate($msgid);
}

11.	 Finally, we also add a method that can return translated blocks of text from text
files. Bear in mind that this could be modified to use a database instead. We did not
include this functionality in the adapter, as its purpose is completely different; we
just want to return large blocks of code given a key, which could conceivably be the
filename of the translated text file:

public function text($key, $localeCode = NULL)
{
 if ($localeCode === NULL) $localeCode =
 $this->defaultLocaleCode;
 $contents = $key;
 if (isset($this->textFilePattern[$localeCode])) {
 $fn = sprintf($this->textFilePattern[$localeCode],
 $localeCode, $key);
 if (file_exists($fn)) {
 $contents = file_get_contents($fn);
 }
 }
 return $contents;
}

How it works...
First you will need to define a directory structure to house the translation files. For the
purposes of this illustration, you can make a directory ,/path/to/project/files/data/
languages. Under this directory structure, create sub-directories that represent different
locales. For this illustration, you could use these: de_DE, fr_FR, en_GB, and es_ES,
representing German, French, English, and Spanish.

Next you will need to create the different translation files. As an example, here is a
representative data/languages/es_ES/translation.ini file in Spanish:

Welcome=Bienvenido
About Us=Sobre Nosotros
Contact Us=Contáctenos
Find Us=Encontrarnos
click=clic para más información

Chapter 8

303

Likewise, to demonstrate the CSV adapter, create the same thing as a CSV file, data/
languages/es_ES/translation.csv:

"Welcome","Bienvenido"
"About Us","Sobre Nosotros"
"Contact Us","Contáctenos"
"Find Us","Encontrarnos"
"click","clic para más información"

Finally, create a database table, translation, and populate it with the same data.
The main difference is that the database table will have three fields: msgid, msgstr,
and locale_code:

CREATE TABLE `translation` (
 `msgid` varchar(255) NOT NULL,
 `msgstr` varchar(255) NOT NULL,
 `locale_code` char(6) NOT NULL DEFAULT '',
 PRIMARY KEY (`msgid`,`locale_code`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Next, define the classes mentioned previously, using the code shown in this recipe:

ff Application\I18n\Translate\Adapter\TranslateAdapterInterface

ff Application\I18n\Translate\Adapter\TranslateAdapterTrait

ff Application\I18n\Translate\Adapter\Ini

ff Application\I18n\Translate\Adapter\Csv

ff Application\I18n\Translate\Adapter\Database

ff Application\I18n\Translate\Translation

Now you can create a test file, chap_08_translation_database.php, to test the
database translation adapter. It should implement autoloading, use the appropriate classes,
and create a Locale and Connection instance. Note that the TEXT_FILE_PATTERN
constant is a sprintf() pattern in which the locale code and filename are substituted:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
define('TEXT_FILE_PATTERN', __DIR__ . '/../data/languages/%s/%s.txt');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\I18n\Locale;
use Application\I18n\Translate\ { Translation, Adapter\Database };
use Application\Database\Connection;

$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$locale = new Locale('fr_FR');

Working with Date/Time and International Aspects

304

Next, create a translation adapter instance and use that to create a Translation instance:

$adapter = new Database($locale, $conn, 'translation');
$translate = new Translation($adapter, $locale->getLocaleCode(), TEXT_
FILE_PATTERN);
?>

Finally, create display logic that uses the $translate instance:

<!DOCTYPE html>
<head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
 <link rel="stylesheet" type="text/css" href="php7cookbook_html_
table.css">
</head>
<body>
<table>
<tr>
 <th><h1 style="color:white;"><?= $translate('Welcome') ?></h1></th>
 <td>
 <div style="float:left;width:50%;vertical-align:middle;">
 <h3 style="font-size:24pt;"><i>Some Company, Inc.</i></h3>
 </div>
 <div style="float:right;width:50%;">

 </div>
 </td>
</tr>
<tr>
 <th>

 <?= $translate('About Us') ?>
 <?= $translate('Contact Us') ?>
 <?= $translate('Find Us') ?>

 </th>
 <td>
 <p>
 <?= $translate->text('main_page'); ?>
 </p>
 <p>
 <?= $translate('click') ?>
 </p>
 </td>
</tr>
</table>
</body>
</html>

Chapter 8

305

You can then perform additional similar tests, substituting a new locale to get a different
language, or using another adapter to test a different data source. Here is an example of
output using a locale of fr_FR and the database translation adapter:

See also
ff For more information on the Google Translation API, see https://cloud.google.

com/translate/v2/translating-text-with-rest.

ff For more information on Amazon Mechanical Turk, see https://www.mturk.com/
mturk/welcome. For more information on gettext, see http://www.gnu.org/
software/gettext/manual/gettext.html.

https://cloud.google.com/translate/v2/translating-text-with-rest
https://cloud.google.com/translate/v2/translating-text-with-rest
https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
http://www.gnu.org/software/gettext/manual/gettext.html
http://www.gnu.org/software/gettext/manual/gettext.html

307

9
Developing Middleware

In this chapter, we will cover the following topics:

ff Authenticating with middleware

ff Using middleware to implement access control

ff Improving performance using the cache

ff Implementing routing

ff Making inter-framework system calls

ff Using middleware to cross languages

Introduction
As often happens in the IT industry, terms get invented, and then used and abused. The
term middleware is no exception. Arguably the first use of the term came out of the Internet
Engineering Task Force (IETF) in the year 2000. Originally, the term was applied to any
software which operates between the transport (that is, TCP/IP) and the application layer.
More recently, especially with the acceptance of PHP Standard Recommendation number 7
(PSR-7), middleware, specifically in the PHP world, has been applied to the web client-server
environment.

The recipes in this section will make use of the concrete classes defined in
Appendix, Defining PSR-7 Classes.

Developing Middleware

308

Authenticating with middleware
One very important usage of middleware is to provide authentication. Most web-based
applications need the ability to verify a visitor via username and password. By incorporating
PSR-7 standards into an authentication class, you will make it generically useful across the
board, so to speak, being secure enough that it can be used in any framework that provides
PSR-7-compliant request and response objects.

How to do it…
1.	 We begin by defining an Application\Acl\AuthenticateInterface class.

We use this interface to support the Adapter software design pattern, making our
Authenticate class more generically useful by allowing a variety of adapters, each
of which can draw authentication from a different source (for example, from a file,
using OAuth2, and so on). Note the use of the PHP 7 ability to define the return
value data type:
namespace Application\Acl;
use Psr\Http\Message\ { RequestInterface, ResponseInterface };
interface AuthenticateInterface
{
 public function login(RequestInterface $request) :
 ResponseInterface;
}

Note that by defining a method that requires a
PSR-7-compliant request, and produces a PSR-7-compliant
response, we have made this interface universally
applicable.

2.	 Next, we define the adapter that implements the login() method required by
the interface. We make sure to use the appropriate classes, and define fitting
constants and properties. The constructor makes use of Application\Database\
Connection, defined in Chapter 5, Interacting with a Database:
namespace Application\Acl;
use PDO;
use Application\Database\Connection;
use Psr\Http\Message\ { RequestInterface, ResponseInterface };
use Application\MiddleWare\ { Response, TextStream };
class DbTable implements AuthenticateInterface

Chapter 9

309

{
 const ERROR_AUTH = 'ERROR: authentication error';
 protected $conn;
 protected $table;
 public function __construct(Connection $conn, $tableName)
 {
 $this->conn = $conn;
 $this->table = $tableName;
 }

3.	 The core login() method extracts the username and password from the request
object. We then do a straightforward database lookup. If there is a match, we store
user information in the response body, JSON-encoded:
public function login(RequestInterface $request) :
 ResponseInterface
{
 $code = 401;
 $info = FALSE;
 $body = new TextStream(self::ERROR_AUTH);
 $params = json_decode($request->getBody()->getContents());
 $response = new Response();
 $username = $params->username ?? FALSE;
 if ($username) {
 $sql = 'SELECT * FROM ' . $this->table
 . ' WHERE email = ?';
 $stmt = $this->conn->pdo->prepare($sql);
 $stmt->execute([$username]);
 $row = $stmt->fetch(PDO::FETCH_ASSOC);
 if ($row) {
 if (password_verify($params->password,
 $row['password'])) {
 unset($row['password']);
 $body =
 new TextStream(json_encode($row));
 $response->withBody($body);
 $code = 202;
 $info = $row;
 }
 }
 }
 return $response->withBody($body)->withStatus($code);
 }
 }

Developing Middleware

310

Best practice
Never store passwords in clear text. When you need to do
a password match, use password_verify(), which
negates the need to reproduce the password hash.

4.	 The Authenticate class is a wrapper for an adapter class that implements
AuthenticationInterface. Accordingly, the constructor takes an adapter class
as an argument, as well as a string that serves as the key, in which authentication
information is stored in $_SESSION:
namespace Application\Acl;
use Application\MiddleWare\ { Response, TextStream };
use Psr\Http\Message\ { RequestInterface, ResponseInterface };
class Authenticate
{
 const ERROR_AUTH = 'ERROR: invalid token';
 const DEFAULT_KEY = 'auth';
 protected $adapter;
 protected $token;
 public function __construct(
 AuthenticateInterface $adapter, $key)
 {
 $this->key = $key;
 $this->adapter = $adapter;
 }

5.	 In addition, we provide a login form with a security token, which helps prevent Cross
Site Request Forgery (CSRF) attacks:
public function getToken()
{
 $this->token = bin2hex(random_bytes(16));
 $_SESSION['token'] = $this->token;
 return $this->token;
}
public function matchToken($token)
{
 $sessToken = $_SESSION['token'] ?? date('Ymd');
 return ($token == $sessToken);
}
public function getLoginForm($action = NULL)
{
 $action = ($action) ? 'action="' . $action . '" ' : '';

Chapter 9

311

 $output = '<form method="post" ' . $action . '>';
 $output .= '<table><tr><th>Username</th><td>';
 $output .= '<input type="text" name="username" /></td>';
 $output .= '</tr><tr><th>Password</th><td>';
 $output .= '<input type="password" name="password" />';
 $output .= '</td></tr><tr><th> </th>';
 $output .= '<td><input type="submit" /></td>';
 $output .= '</tr></table>';
 $output .= '<input type="hidden" name="token" value="';
 $output .= $this->getToken() . '" />';
 $output .= '</form>';
 return $output;
}

6.	 Finally, the login() method in this class checks whether the token is valid. If not, a
400 response is returned. Otherwise, the login() method of the adapter is called:

public function login(
RequestInterface $request) : ResponseInterface
{
 $params = json_decode($request->getBody()->getContents());
 $token = $params->token ?? FALSE;
 if (!($token && $this->matchToken($token))) {
 $code = 400;
 $body = new TextStream(self::ERROR_AUTH);
 $response = new Response($code, $body);
 } else {
 $response = $this->adapter->login($request);
 }
 if ($response->getStatusCode() >= 200
 && $response->getStatusCode() < 300) {
 $_SESSION[$this->key] =
 json_decode($response->getBody()->getContents());
 } else {
 $_SESSION[$this->key] = NULL;
 }
 return $response;
}

}

Developing Middleware

312

How it works…
First of all, be sure to follow the recipes defined in Appendix, Defining PSR-7 Classes. Next,
go ahead and define the classes presented in this recipe, summarized in the following table:

Class Discussed in these steps
Application\Acl\AuthenticateInterface 1
Application\Acl\DbTable 2 - 3
Application\Acl\Authenticate 4 - 6

You can then define a chap_09_middleware_authenticate.php calling program that
sets up autoloading and uses the appropriate classes:

<?php
session_start();
define('DB_CONFIG_FILE', __DIR__ . '/../config/db.config.php');
define('DB_TABLE', 'customer_09');
define('SESSION_KEY', 'auth');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

use Application\Database\Connection;
use Application\Acl\ { DbTable, Authenticate };
use Application\MiddleWare\ { ServerRequest, Request, Constants,
TextStream };

You are now in a position to set up the authentication adapter and core class:

$conn = new Connection(include DB_CONFIG_FILE);
$dbAuth = new DbTable($conn, DB_TABLE);
$auth = new Authenticate($dbAuth, SESSION_KEY);

Be sure to initialize the incoming request, and set up the request to be made to the
authentication class:

$incoming = new ServerRequest();
$incoming->initialize();
$outbound = new Request();

Check the incoming class method to see if it is POST. If so, pass a request to the
authentication class:

if ($incoming->getMethod() == Constants::METHOD_POST) {
 $body = new TextStream(json_encode(

Chapter 9

313

 $incoming->getParsedBody()));
 $response = $auth->login($outbound->withBody($body));
}
$action = $incoming->getServerParams()['PHP_SELF'];
?>

The display logic looks like this:

<?= $auth->getLoginForm($action) ?>

Here is the output from an invalid authentication attempt. Notice the 401 status code on the
right. In this illustration, you could add a var_dump() of the response object:

Developing Middleware

314

Here is a successful authentication:

See also
For guidance on how to avoid CSRF and other attacks, please see Chapter 12, Improving
Web Security.

Using middleware to implement access
control

As the name implies, middleware sits in the middle of a sequence of function or method calls.
Accordingly, middleware is well suited for the task of "gate keeper". You can easily implement
an Access Control List (ACL) mechanism with a middleware class that reads the ACL, and
allows or denies access to the next function or method call in the sequence.

Chapter 9

315

How to do it…
1.	 Probably the most difficult part of the process is determining which factors to include

in the ACL. For the purposes of illustration, let's say that our users are all assigned a
level and a status. In this illustration, the level is defined as follows:
 'levels' => [0, 'BEG', 'INT', 'ADV']

2.	 The status could indicate how far they are in the membership signup process.
For example, a status of 0 could indicate they've initiated the membership signup
process, but have not yet been confirmed. A status of 1 could indicate their e-mail
address is confirmed, but they have not paid the monthly fee, and so on.

3.	 Next, we need to define the resources we plan to control. In this case, we will assume
there is a need to control access to a series of web pages on the site. Accordingly, we
need to define an array of such resources. In the ACL, we can then refer to the key:
'pages' => [0 => 'sorry', 'logout' => 'logout',
 'login' => 'auth',
 1 => 'page1', 2 => 'page2', 3 => 'page3',
 4 => 'page4', 5 => 'page5', 6 => 'page6',
 7 => 'page7', 8 => 'page8', 9 => 'page9']

4.	 Finally, the most important piece of configuration is to make assignments to pages
according to level and status. The generic template used in the configuration
array might look like this:
status => ['inherits' => <key>, 'pages' => [level =>
 [pages allowed], etc.]]

5.	 Now we are in a position to define the Acl class. As before, we use a few classes,
and define constants and properties appropriate for access control:
namespace Application\Acl;

use InvalidArgumentException;
use Psr\Http\Message\RequestInterface;
use Application\MiddleWare\ { Constants, Response, TextStream };

class Acl
{
 const DEFAULT_STATUS = '';
 const DEFAULT_LEVEL = 0;
 const DEFAULT_PAGE = 0;
 const ERROR_ACL = 'ERROR: authorization error';
 const ERROR_APP = 'ERROR: requested page not listed';

Developing Middleware

316

 const ERROR_DEF =
 'ERROR: must assign keys "levels", "pages" and "allowed"';
 protected $default;
 protected $levels;
 protected $pages;
 protected $allowed;

6.	 In the __construct() method, we break up the assignments array into $pages,
the resources to be controlled, $levels, and $allowed, which are the actual
assignments. If the array does not include one of these three sub-components, an
exception is thrown:
public function __construct(array $assignments)
{
 $this->default = $assignments['default']
 ?? self::DEFAULT_PAGE;
 $this->pages = $assignments['pages'] ?? FALSE;
 $this->levels = $assignments['levels'] ?? FALSE;
 $this->allowed = $assignments['allowed'] ?? FALSE;
 if (!($this->pages && $this->levels && $this->allowed)) {
 throw new InvalidArgumentException(self::ERROR_DEF);
 }
}

7.	 You may have noticed that we allow inheritance. In $allowed, the inherits key
can be set to another key within the array. If so, we need to merge its values with
the values currently under examination. We iterate through $allowed in reverse,
merging any inherited values each time through the loop. This method, incidentally,
also only isolates rules that apply to a certain status and level:
protected function mergeInherited($status, $level)
{
 $allowed = $this->allowed[$status]['pages'][$level]
 ?? array();
 for ($x = $status; $x > 0; $x--) {
 $inherits = $this->allowed[$x]['inherits'];
 if ($inherits) {
 $subArray =
 $this->allowed[$inherits]['pages'][$level]
 ?? array();
 $allowed = array_merge($allowed, $subArray);
 }
 }
 return $allowed;
}

Chapter 9

317

8.	 When processing authorization, we initialize a few variables, and then extract the
page requested from the original request URI. If the page parameter doesn't exist, we
set a 400 code:
public function isAuthorized(RequestInterface $request)
{
 $code = 401; // unauthorized
 $text['page'] = $this->pages[$this->default];
 $text['authorized'] = FALSE;
 $page = $request->getUri()->getQueryParams()['page']
 ?? FALSE;
 if ($page === FALSE) {
 $code = 400; // bad request

9.	 Otherwise, we decode the request body contents, and acquire the status and
level. We are then in a position to call mergeInherited(), which returns an array
of pages accessible to this status and level:
} else {
 $params = json_decode(
 $request->getBody()->getContents());
 $status = $params->status ?? self::DEFAULT_LEVEL;
 $level = $params->level ?? '*';
 $allowed = $this->mergeInherited($status, $level);

10.	 If the requested page is in the $allowed array, we set the status code to a happy
200, and return an authorized setting along with the web page that corresponds to
the page code requested:
if (in_array($page, $allowed)) {
 $code = 200; // OK
 $text['authorized'] = TRUE;
 $text['page'] = $this->pages[$page];
} else {
 $code = 401; }
}

11.	 We then return the response, JSON-encoded, and we are done:

$body = new TextStream(json_encode($text));
return (new Response())->withStatus($code)
->withBody($body);
}

}

Developing Middleware

318

How it works…
After that, you will need to define Application\Acl\Acl, which is discussed in this recipe.
Now move to the /path/to/source/for/this/chapter folder and create two directories:
public and pages. In pages, create a series of PHP files, such as page1.php, page2.php,
and so on. Here is an example of how one of these pages might look:

<?php // page 1 ?>
<h1>Page 1</h1>
<hr>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. etc.</p>

You can also define a menu.php page, which could be included in the output:

<?php // menu ?>
Page 1
Page 2
Page 3
// etc.

The logout.php page should destroy the session:

<?php
 $_SESSION['info'] = FALSE;
 session_destroy();
?>
BACK

The auth.php page will display a login screen (as described in the previous recipe):

<?= $auth->getLoginForm($action) ?>

You can then create a configuration file that allows access to web pages depending on level
and status. For the sake of illustration, call it chap_09_middleware_acl_config.php and
return an array that might look like this:

<?php
$min = [0, 'logout'];
return [
 'default' => 0, // default page
 'levels' => [0, 'BEG', 'INT', 'ADV'],
 'pages' => [0 => 'sorry',
 'logout' => 'logout',
 'login' => 'auth',
 1 => 'page1', 2 => 'page2', 3 => 'page3',
 4 => 'page4', 5 => 'page5', 6 => 'page6',

Chapter 9

319

 7 => 'page7', 8 => 'page8', 9 => 'page9'],
 'allowed' => [
 0 => ['inherits' => FALSE,
 'pages' => ['*' => $min, 'BEG' => $min,
 'INT' => $min,'ADV' => $min]],
 1 => ['inherits' => FALSE,
 'pages' => ['*' => ['logout'],
 'BEG' => [1, 'logout'],
 'INT' => [1,2, 'logout'],
 'ADV' => [1,2,3, 'logout']]],
 2 => ['inherits' => 1,
 'pages' => ['BEG' => [4],
 'INT' => [4,5],
 'ADV' => [4,5,6]]],
 3 => ['inherits' => 2,
 'pages' => ['BEG' => [7],
 'INT' => [7,8],
 'ADV' => [7,8,9]]]
]
];

Finally, in the public folder, define index.php, which sets up autoloading, and ultimately
calls up both the Authenticate and Acl classes. As with other recipes, define configuration
files, set up autoloading, and use certain classes. Also, don't forget to start
the session:

<?php
session_start();
session_regenerate_id();
define('DB_CONFIG_FILE', __DIR__ . '/../../config/db.config.php');
define('DB_TABLE', 'customer_09');
define('PAGE_DIR', __DIR__ . '/../pages');
define('SESSION_KEY', 'auth');
require __DIR__ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/../..');

use Application\Database\Connection;
use Application\Acl\ { Authenticate, Acl };
use Application\MiddleWare\ { ServerRequest, Request, Constants,
 TextStream };

Developing Middleware

320

Best practice
It is a best practice to protect your sessions. An easy way to help protect a
session is to use session_regenerate_id(), which invalidates the
existing PHP session identifier and generates a new one. Thus, if an attacker
were to obtain the session identifier through illegal means, the window of
time in which any given session identifier is valid is kept to a minimum.

You can now pull in the ACL configuration, and create instances for Authenticate as well
as Acl:

$config = require __DIR__ . '/../chap_09_middleware_acl_config.php';
$acl = new Acl($config);
$conn = new Connection(include DB_CONFIG_FILE);
$dbAuth = new DbTable($conn, DB_TABLE);
$auth = new Authenticate($dbAuth, SESSION_KEY);

Next, define incoming and outbound request instances:

$incoming = new ServerRequest();
$incoming->initialize();
$outbound = new Request();

If the incoming request method was post, process the authentication calling the login()
method:

if (strtolower($incoming->getMethod()) == Constants::METHOD_POST) {
 $body = new TextStream(json_encode(
 $incoming->getParsedBody()));
 $response = $auth->login($outbound->withBody($body));
}

If the session key defined for authentication is populated, that means the user has been
successfully authenticated. If not, we program an anonymous function, called later, which
includes the authentication login page:

$info = $_SESSION[SESSION_KEY] ?? FALSE;
if (!$info) {
 $execute = function () use ($auth) {
 include PAGE_DIR . '/auth.php';
 };

Otherwise, you can proceed with the ACL check. You first need to find, from the original query,
which web page the user wants to visit, however:

} else {
 $query = $incoming->getServerParams()['QUERY_STRING'] ?? '';

Chapter 9

321

You can then reprogram the $outbound request to include this information:

$outbound->withBody(new TextStream(json_encode($info)));
$outbound->getUri()->withQuery($query);

Next, you'll be in a position to check authorization, supplying the outbound request as
an argument:

$response = $acl->isAuthorized($outbound);

You can then examine the return response for the authorized parameter, and program
an anonymous function to include the return page parameter if OK, and the sorry
page otherwise:

$params = json_decode($response->getBody()->getContents());
$isAllowed = $params->authorized ?? FALSE;
if ($isAllowed) {
 $execute = function () use ($response, $params) {
 include PAGE_DIR .'/' . $params->page . '.php';
 echo '<pre>', var_dump($response), '</pre>';
 echo '<pre>', var_dump($_SESSION[SESSION_KEY]);
 echo '</pre>';
 };
} else {
 $execute = function () use ($response) {
 include PAGE_DIR .'/sorry.php';
 echo '<pre>', var_dump($response), '</pre>';
 echo '<pre>', var_dump($_SESSION[SESSION_KEY]);
 echo '</pre>';
 };
}
}

Now all you need to do is to set the form action and wrap the anonymous function in HTML:

$action = $incoming->getServerParams()['PHP_SELF'];
?>
<!DOCTYPE html>
<head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type" content="text/html;charset=utf-8" />
</head>
<body>
 <?php $execute(); ?>
</body>
</html>

Developing Middleware

322

To test it, you can use the built-in PHP web server, but you will need to use the -t flag to
indicate that the document root is public:

cd /path/to/source/for/this/chapter

php -S localhost:8080 -t public

From a browser, you can access the http://localhost:8080/ URL.

If you try to access any page, you will simply be redirected back to the login page. As per the
configuration, a user with status = 1, and level = BEG can only access page 1 and log out. If,
when logged in as this user, you try to access page 2, here is the output:

See also
This example relies on $_SESSION as the sole means of user authentication once they have
logged in. For good examples of how you can protect PHP sessions, please see Chapter 12,
Improving Web Security, specifically the recipe entitled Safeguarding the PHP session.

Chapter 9

323

Improving performance using the cache
The cache software design pattern is where you store a result that takes a long time to generate.
This could take the form of a lengthy view script or a complex database query. The storage
destination needs to be highly performant, of course, if you wish to improve the user experience
of website visitors. As different installations will have different potential storage targets, the
cache mechanism lends itself to the adapter pattern as well. Examples of potential storage
destinations include memory, a database, and the filesystem.

How to do it…
1.	 As with a couple of other recipes in this chapter, as there are shared constants,

we define a discreet Application\Cache\Constants class:
<?php
namespace Application\Cache;

class Constants
{
 const DEFAULT_GROUP = 'default';
 const DEFAULT_PREFIX = 'CACHE_';
 const DEFAULT_SUFFIX = '.cache';
 const ERROR_GET = 'ERROR: unable to retrieve from cache';
 // not all constants are shown to conserve space
}

2.	 Seeing as we are following the adapter design pattern, we define an interface next:
namespace Application\Cache;
interface CacheAdapterInterface
{
 public function hasKey($key);
 public function getFromCache($key, $group);
 public function saveToCache($key, $data, $group);
 public function removeByKey($key);
 public function removeByGroup($group);
}

3.	 Now we are ready to define our first cache adapter, in this illustration, by using a
MySQL database. We need to define properties that will hold column names as well
as prepared statements:
namespace Application\Cache;
use PDO;
use Application\Database\Connection;

Developing Middleware

324

class Database implements CacheAdapterInterface
{
 protected $sql;
 protected $connection;
 protected $table;
 protected $dataColumnName;
 protected $keyColumnName;
 protected $groupColumnName;
 protected $statementHasKey = NULL;
 protected $statementGetFromCache = NULL;
 protected $statementSaveToCache = NULL;
 protected $statementRemoveByKey = NULL;
 protected $statementRemoveByGroup= NULL;

4.	 The constructor allows us to provide key column names as well as an Application\
Database\Connection instance and the name of the table used for the cache:
public function __construct(Connection $connection,
 $table,
 $idColumnName,
 $keyColumnName,
 $dataColumnName,
 $groupColumnName = Constants::DEFAULT_GROUP)
 {
 $this->connection = $connection;
 $this->setTable($table);
 $this->setIdColumnName($idColumnName);
 $this->setDataColumnName($dataColumnName);
 $this->setKeyColumnName($keyColumnName);
 $this->setGroupColumnName($groupColumnName);
 }

5.	 The next few methods prepare statements, and are called when we access the
database. We do not show all the methods, but present enough to give you the idea:
public function prepareHasKey()
{
 $sql = 'SELECT `' . $this->idColumnName . '` '
 . 'FROM `' . $this->table . '` '
 . 'WHERE `' . $this->keyColumnName . '` = :key ';
 $this->sql[__METHOD__] = $sql;
 $this->statementHasKey =
 $this->connection->pdo->prepare($sql);
}
public function prepareGetFromCache()

Chapter 9

325

{
 $sql = 'SELECT `' . $this->dataColumnName . '` '
 . 'FROM `' . $this->table . '` '
 . 'WHERE `' . $this->keyColumnName . '` = :key '
 . 'AND `' . $this->groupColumnName . '` = :group';
 $this->sql[__METHOD__] = $sql;
 $this->statementGetFromCache =
 $this->connection->pdo->prepare($sql);
}

6.	 Now we define a method that determines whether data for a given key exists:
public function hasKey($key)
{
 $result = 0;
 try {
 if (!$this->statementHasKey) $this->prepareHasKey();
 $this->statementHasKey->execute(['key' => $key]);
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(Constants::ERROR_REMOVE_KEY);
 }
 return (int) $this->statementHasKey
 ->fetch(PDO::FETCH_ASSOC)[$this->idColumnName];
}

7.	 The core methods are ones that read from and write to the cache. Here is the method
that retrieves from the cache. All we need to do is to execute the prepared statement,
which performs a SELECT, with a WHERE clause, which incorporates the key and group:
public function getFromCache(
$key, $group = Constants::DEFAULT_GROUP)
{
 try {
 if (!$this->statementGetFromCache)
 $this->prepareGetFromCache();
 $this->statementGetFromCache->execute(
 ['key' => $key, 'group' => $group]);
 while ($row = $this->statementGetFromCache
 ->fetch(PDO::FETCH_ASSOC)) {
 if ($row && count($row)) {
 yield unserialize($row[$this->dataColumnName]);
 }
 }

Developing Middleware

326

 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(Constants::ERROR_GET);
 }
}

8.	 When writing to the cache, we first determine whether an entry for this cache key
exists. If so, we perform an UPDATE; otherwise, we perform an INSERT:
public function saveToCache($key, $data,
 $group = Constants::DEFAULT_GROUP)
{
 $id = $this->hasKey($key);
 $result = 0;
 try {
 if ($id) {
 if (!$this->statementUpdateCache)
 $this->prepareUpdateCache();
 $result = $this->statementUpdateCache
 ->execute(['key' => $key,
 'data' => serialize($data),
 'group' => $group,
 'id' => $id]);
 } else {
 if (!$this->statementSaveToCache)
 $this->prepareSaveToCache();
 $result = $this->statementSaveToCache
 ->execute(['key' => $key,
 'data' => serialize($data),
 'group' => $group]);
 }
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(Constants::ERROR_SAVE);
 }
 return $result;
 }

9.	 We then define two methods that remove the cache either by key or by group.
Removal by group provides a convenient mechanism if there are a large number of
items that need to be deleted:
public function removeByKey($key)
{
 $result = 0;
 try {

Chapter 9

327

 if (!$this->statementRemoveByKey)
 $this->prepareRemoveByKey();
 $result = $this->statementRemoveByKey->execute(
 ['key' => $key]);
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(Constants::ERROR_REMOVE_KEY);
 }
 return $result;
}

public function removeByGroup($group)
{
 $result = 0;
 try {
 if (!$this->statementRemoveByGroup)
 $this->prepareRemoveByGroup();
 $result = $this->statementRemoveByGroup->execute(
 ['group' => $group]);
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(Constants::ERROR_REMOVE_GROUP);
 }
 return $result;
 }

10.	 Lastly, we define getters and setters for each of the properties. Not all are shown here
to conserve space:
public function setTable($name)
{
 $this->table = $name;
}
public function getTable()
{
 return $this->table;
}
// etc.
}

11.	 The filesystem cache adapter defines the same methods as defined earlier. Note the
use of md5(), not for security, but as a way of quickly generating a text string from
the key:
namespace Application\Cache;
use RecursiveIteratorIterator;

Developing Middleware

328

use RecursiveDirectoryIterator;
class File implements CacheAdapterInterface
{
 protected $dir;
 protected $prefix;
 protected $suffix;
 public function __construct(
 $dir, $prefix = NULL, $suffix = NULL)
 {
 if (!file_exists($dir)) {
 error_log(__METHOD__ . ':' . Constants::ERROR_DIR_NOT);
 throw new Exception(Constants::ERROR_DIR_NOT);
 }
 $this->dir = $dir;
 $this->prefix = $prefix ?? Constants::DEFAULT_PREFIX;
 $this->suffix = $suffix ?? Constants::DEFAULT_SUFFIX;
 }

 public function hasKey($key)
 {
 $action = function ($name, $md5Key, &$item) {
 if (strpos($name, $md5Key) !== FALSE) {
 $item ++;
 }
 };

 return $this->findKey($key, $action);
 }

 public function getFromCache($key,
 $group = Constants::DEFAULT_GROUP)
 {
 $fn = $this->dir . '/' . $group . '/'
 . $this->prefix . md5($key) . $this->suffix;
 if (file_exists($fn)) {
 foreach (file($fn) as $line) { yield $line; }
 } else {
 return array();
 }
 }

 public function saveToCache(
 $key, $data, $group = Constants::DEFAULT_GROUP)
 {

Chapter 9

329

 $baseDir = $this->dir . '/' . $group;
 if (!file_exists($baseDir)) mkdir($baseDir);
 $fn = $baseDir . '/' . $this->prefix . md5($key)
 . $this->suffix;
 return file_put_contents($fn, json_encode($data));
 }

 protected function findKey($key, callable $action)
 {
 $md5Key = md5($key);
 $iterator = new RecursiveIteratorIterator(
 new RecursiveDirectoryIterator($this->dir),
 RecursiveIteratorIterator::SELF_FIRST);
 $item = 0;
 foreach ($iterator as $name => $obj) {
 $action($name, $md5Key, $item);
 }
 return $item;
 }

 public function removeByKey($key)
 {
 $action = function ($name, $md5Key, &$item) {
 if (strpos($name, $md5Key) !== FALSE) {
 unlink($name);
 $item++;
 }
 };
 return $this->findKey($key, $action);
 }

 public function removeByGroup($group)
 {
 $removed = 0;
 $baseDir = $this->dir . '/' . $group;
 $pattern = $baseDir . '/' . $this->prefix . '*'
 . $this->suffix;
 foreach (glob($pattern) as $file) {
 unlink($file);
 $removed++;
 }
 return $removed;
 }
}

Developing Middleware

330

12.	 Now we are ready to present the core cache mechanism. In the constructor, we
accept a class that implements CacheAdapterInterface as an argument:
namespace Application\Cache;
use Psr\Http\Message\RequestInterface;
use Application\MiddleWare\ { Request, Response, TextStream };
class Core
{
 public function __construct(CacheAdapterInterface $adapter)
 {
 $this->adapter = $adapter;
 }

13.	 Next are a series of wrapper methods that call methods of the same name from
the adapter, but accept a Psr\Http\Message\RequestInterface class an an
argument, and return a Psr\Http\Message\ResponseInterface as a response.
We start with a simple one: hasKey(). Note how we extract the key from the
request parameters:
public function hasKey(RequestInterface $request)
{
 $key = $request->getUri()->getQueryParams()['key'] ?? '';
 $result = $this->adapter->hasKey($key);
}

14.	 To retrieve information from the cache, we need to pull the key and group parameters
from the request object, and then call the same method from the adapter. If no results
are obtained, we set a 204 code, which indicates the request was a success, but no
content was produced. Otherwise, we set a 200 (success) code, and iterate through the
results. Everything is then stuffed into a response object, which is returned:
public function getFromCache(RequestInterface $request)
{
 $text = array();
 $key = $request->getUri()->getQueryParams()['key'] ?? '';
 $group = $request->getUri()->getQueryParams()['group']
 ?? Constants::DEFAULT_GROUP;
 $results = $this->adapter->getFromCache($key, $group);
 if (!$results) {
 $code = 204;
 } else {
 $code = 200;
 foreach ($results as $line) $text[] = $line;
 }

Chapter 9

331

 if (!$text || count($text) == 0) $code = 204;
 $body = new TextStream(json_encode($text));
 return (new Response())->withStatus($code)
 ->withBody($body);
}

15.	 Strangely, writing to the cache is almost identical, except that the results are expected
to be either a number (that is, the number of rows affected), or a Boolean result:
public function saveToCache(RequestInterface $request)
{
 $text = array();
 $key = $request->getUri()->getQueryParams()['key'] ?? '';
 $group = $request->getUri()->getQueryParams()['group']
 ?? Constants::DEFAULT_GROUP;
 $data = $request->getBody()->getContents();
 $results = $this->adapter->saveToCache($key, $data, $group);
 if (!$results) {
 $code = 204;
 } else {
 $code = 200;
 $text[] = $results;
 }
 $body = new TextStream(json_encode($text));
 return (new Response())->withStatus($code)
 ->withBody($body);
 }

16.	 The remove methods are, as expected, quite similar to each other:
public function removeByKey(RequestInterface $request)
{
 $text = array();
 $key = $request->getUri()->getQueryParams()['key'] ?? '';
 $results = $this->adapter->removeByKey($key);
 if (!$results) {
 $code = 204;
 } else {
 $code = 200;
 $text[] = $results;
 }
 $body = new TextStream(json_encode($text));
 return (new Response())->withStatus($code)

Developing Middleware

332

 ->withBody($body);
}

public function removeByGroup(RequestInterface $request)
{
 $text = array();
 $group = $request->getUri()->getQueryParams()['group']
 ?? Constants::DEFAULT_GROUP;
 $results = $this->adapter->removeByGroup($group);
 if (!$results) {
 $code = 204;
 } else {
 $code = 200;
 $text[] = $results;
 }
 $body = new TextStream(json_encode($text));
 return (new Response())->withStatus($code)
 ->withBody($body);
 }
} // closing brace for class Core

How it works…
In order to demonstrate the use of the Acl class, you will need to define the classes
described in this recipe, summarized here:

Class Discussed in these steps
Application\Cache\Constants 1
Application\Cache\CacheAdapterInterface 2
Application\Cache\Database 3 - 10
Application\Cache\File 11
Application\Cache\Core 12 - 16

Next, define a test program, which you could call chap_09_middleware_cache_db.php.
In this program, as usual, define constants for necessary files, set up autoloading, use the
appropriate classes, oh... and write a function that produces prime numbers (you're probably
re-reading that last little bit at this point. Not to worry, we can help you with that!):

<?php
define('DB_CONFIG_FILE', __DIR__ . '/../config/db.config.php');
define('DB_TABLE', 'cache');
define('CACHE_DIR', __DIR__ . '/cache');
define('MAX_NUM', 100000);

Chapter 9

333

require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
use Application\Cache\{ Constants, Core, Database, File };
use Application\MiddleWare\ { Request, TextStream };

Well, a function that takes a long time to run is needed, so prime number generator, here
we go! The numbers 1, 2, and 3 are given as primes. We use the PHP 7 yield from syntax
to produce these first three. then, we skip right to 5, and proceed up to the maximum value
requested:

function generatePrimes($max)
{
 yield from [1,2,3];
 for ($x = 5; $x < $max; $x++)
 {
 if($x & 1) {
 $prime = TRUE;
 for($i = 3; $i < $x; $i++) {
 if(($x % $i) === 0) {
 $prime = FALSE;
 break;
 }
 }
 if ($prime) yield $x;
 }
 }
}

You can then set up a database cache adapter instance, which serves as an argument for
the core:

$conn = new Connection(include DB_CONFIG_FILE);
$dbCache = new Database(
 $conn, DB_TABLE, 'id', 'key', 'data', 'group');
$core = new Core($dbCache);

Alternatively, if you wish to use the file cache adapter instead, here is the appropriate code:

$fileCache = new File(CACHE_DIR);
$core = new Core($fileCache);

If you wanted to clear the cache, here is how it might be done:

$uriString = '/?group=' . Constants::DEFAULT_GROUP;
$cacheRequest = new Request($uriString, 'get');
$response = $core->removeByGroup($cacheRequest);

Developing Middleware

334

You can use time() and microtime() to see how long this script runs with and without
the cache:

$start = time() + microtime(TRUE);
echo "\nTime: " . $start;

Next, generate a cache request. A status code of 200 indicates you were able to obtain a list
of primes from the cache:

$uriString = '/?key=Test1';
$cacheRequest = new Request($uriString, 'get');
$response = $core->getFromCache($cacheRequest);
$status = $response->getStatusCode();
if ($status == 200) {
 $primes = json_decode($response->getBody()->getContents());

Otherwise, you can assume nothing was obtained from the cache, which means you need to
generate prime numbers, and save the results to the cache:

} else {
 $primes = array();
 foreach (generatePrimes(MAX_NUM) as $num) {
 $primes[] = $num;
 }
 $body = new TextStream(json_encode($primes));
 $response = $core->saveToCache(
 $cacheRequest->withBody($body));
}

You can then check the stop time, calculate the difference, and have a look at your new list
of primes:

$time = time() + microtime(TRUE);
$diff = $time - $start;
echo "\nTime: $time";
echo "\nDifference: $diff";
var_dump($primes);

Here is the expected output before values were stored in the cache:

Chapter 9

335

You can now run the same program again, this time retrieving from the cache:

Developing Middleware

336

Allowing for the fact that our little prime number generator is not the world's most efficient,
and also that the demonstration was run on a laptop, the time went from over 30 seconds
down to milliseconds.

There's more…
Another possible cache adapter could be built around commands that are part of the Alternate
PHP Cache (APC) extension. This extension includes such functions as apc_exists(),
apc_store(), apc_fetch(), and apc_clear_cache(). These functions are perfect for our
hasKey(), saveToCache(), getFromCache(), and removeBy*() functions.

See also
You might consider making slight changes to the cache adapter classes described previously
following PSR-6, which is a standards recommendation directed towards the cache. There is
not the same level of acceptance of this standard as with PSR-7, however, so we decided to
not follow this standard exactly in the recipe presented here. For more information on PSR-6,
please refer to http://www.php-fig.org/psr/psr-6/.

Implementing routing
Routing refers to the process of accepting user-friendly URLs, dissecting the URL into its
component parts, and then making a determination as to which class and method should
be dispatched. The advantage of such an implementation is that not only can you make your
URLs Search Engine Optimization (SEO)-friendly, but you can also create rules, incorporating
regular expression patterns, which can extract values of parameters.

How to do it…
1.	 Probably the most popular approach is to take advantage of a web server that

supports URL rewriting. An example of this is an Apache web server configured to
use mod_rewrite. You then define rewriting rules that allow graphic file requests
and requests for CSS and JavaScript to pass untouched. Otherwise, the request
would be funneled through a routing method.

2.	 Another potential approach is to simply have your web server virtual host definition
point to a specific routing script, which then invokes the routing class, make routing
decisions, and redirect appropriately.

http://www.php-fig.org/psr/psr-6/

Chapter 9

337

3.	 The first code to consider is how to define routing configuration. The obvious answer
is to construct an array, where each key would point to a regular expression against
which the URI path would match, and some form of action. An example of such
configuration is shown in the following code snippet. In this example, we have three
routes defined: home, page, and the default. The default should be last as it will
match anything not matched previously. The action is in the form of an anonymous
function that will be executed if a route match occurs:
$config = [
 'home' => [
 'uri' => '!^/$!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/page0.php'; }
],
 'page' => [
 'uri' => '!^/(page)/(\d+)$!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/page' . $matches[2] . '.php'; }
],
 Router::DEFAULT_MATCH => [
 'uri' => '!.*!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/sorry.php'; }
],
];

4.	 Next, we define our Router class. We first define constants and properties that will
be of use during the process of examining and matching a route:
namespace Application\Routing;
use InvalidArgumentException;
use Psr\Http\Message\ServerRequestInterface;
class Router
{
 const DEFAULT_MATCH = 'default';
 const ERROR_NO_DEF = 'ERROR: must supply a default match';
 protected $request;
 protected $requestUri;
 protected $uriParts;
 protected $docRoot;
 protected $config;
 protected $routeMatch;

Developing Middleware

338

5.	 The constructor accepts a ServerRequestInterface compliant class, the path to
the document root, and the configuration file mentioned earlier. Note that we throw
an exception if the default configuration is not supplied:
public function __construct(ServerRequestInterface $request,
 $docRoot, $config)
{
 $this->config = $config;
 $this->docRoot = $docRoot;
 $this->request = $request;
 $this->requestUri =
 $request->getServerParams()['REQUEST_URI'];
 $this->uriParts = explode('/', $this->requestUri);
 if (!isset($config[self::DEFAULT_MATCH])) {
 throw new InvalidArgumentException(
 self::ERROR_NO_DEF);
 }
}

6.	 Next, we have a series of getters that allow us to retrieve the original request,
document root, and final route match:
public function getRequest()
{
 return $this->request;
}
public function getDocRoot()
{
 return $this->docRoot;
}
public function getRouteMatch()
{
 return $this->routeMatch;
}

7.	 The isFileOrDir() method is used to determine whether we are trying to match
against a CSS, JavaScript, or graphic request (among other possibilities):
public function isFileOrDir()
{
 $fn = $this->docRoot . '/' . $this->requestUri;
 $fn = str_replace('//', '/', $fn);
 if (file_exists($fn)) {
 return $fn;
 } else {
 return '';
 }
}

Chapter 9

339

8.	 Finally we define match(), which iterates through the configuration array and runs
the uri parameter through preg_match(). If positive, the configuration key and
$matches array populated by preg_match() are stored in $routeMatch, and the
callback is returned. If there is no match, the default callback is returned:

public function match()
{
 foreach ($this->config as $key => $route) {
 if (preg_match($route['uri'],
 $this->requestUri, $matches)) {
 $this->routeMatch['key'] = $key;
 $this->routeMatch['match'] = $matches;
 return $route['exec'];
 }
 }
 return $this->config[self::DEFAULT_MATCH]['exec'];
}
}

How it works…
First, change to /path/to/source/for/this/chapter and create a directory called
routing. Next, define a file, index.php, which sets up autoloading and uses the right
classes. You can define a constant PAGE_DIR that points to the pages directory created in
the previous recipe:

<?php
define('DOC_ROOT', __DIR__);
define('PAGE_DIR', DOC_ROOT . '/../pages');

require_once __DIR__ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/../..');
use Application\MiddleWare\ServerRequest;
use Application\Routing\Router;

Next, add the configuration array discussed in step 3 of this recipe. Note that you could add
(/)? at the end of the pattern to account for an optional trailing slash. Also, for the home
route, you could offer two options: either / or /home:

$config = [
 'home' => [
 'uri' => '!^(/|/home)$!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/page0.php'; }

Developing Middleware

340

],
 'page' => [
 'uri' => '!^/(page)/(\d+)(/)?$!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/page' . $matches[2] . '.php'; }
],
 Router::DEFAULT_MATCH => [
 'uri' => '!.*!',
 'exec' => function ($matches) {
 include PAGE_DIR . '/sorry.php'; }
],
];

You can then define a router instance, supplying an initialized ServerRequest instance as
the first argument:

$router = new Router((new ServerRequest())
 ->initialize(), DOC_ROOT, $config);
$execute = $router->match();
$params = $router->getRouteMatch()['match'];

You then need to check to see whether the request is a file or directory, and also whether the
route match is /:

if ($fn = $router->isFileOrDir()
 && $router->getRequest()->getUri()->getPath() != '/') {
 return FALSE;
} else {
 include DOC_ROOT . '/main.php';
}

Next, define main.php, something like this:

<?php // demo using middleware for routing ?>
<!DOCTYPE html>
<head>
 <title>PHP 7 Cookbook</title>
 <meta http-equiv="content-type"
 content="text/html;charset=utf-8" />
</head>
<body>
 <?php include PAGE_DIR . '/route_menu.php'; ?>
 <?php $execute($params); ?>
</body>
</html>

Chapter 9

341

And finally, a revised menu that uses user-friendly routing is required:

<?php // menu for routing ?>
Home
Page 1
Page 2
Page 3
<!-- etc. -->

To test the configuration using Apache, define a virtual host definition that points to
/path/to/source/for/this/chapter/routing. In addition, define a .htaccess file
that directs any request that is not a file, directory, or link to index.php. Alternatively, you
could just use the built-in PHP webserver. In a terminal window or command prompt, type
this command:

cd /path/to/source/for/this/chapter/routing

php -S localhost:8080

In a browser, the output when requesting http://localhost:8080/home is something
like this:

Developing Middleware

342

See also
For information on rewriting using the NGINX web server, have a look at this article: http://
nginx.org/en/docs/http/ngx_http_rewrite_module.html. There are plenty of
sophisticated PHP routing libraries available that introduce far greater functionality than
the simple router presented here. These include Altorouter (http://altorouter.com/),
TreeRoute (https://github.com/baryshev/TreeRoute), FastRoute (https://
github.com/nikic/FastRoute), and Aura.Router. (https://github.com/auraphp/
Aura.Router). In addition, most frameworks (for example, Zend Framework 2 or CodeIgniter)
have their own routing capabilities.

Making inter-framework system calls
One of the primary reasons for the development of PSR-7 (and middleware) was a growing
need to make calls between frameworks. It is of interest to note that the main documentation
for PSR-7 is hosted by PHP Framework Interop Group (PHP-FIG).

How to do it…
1.	 The primary mechanism used in middleware inter-framework calls is to create a driver

program that executes framework calls in succession, maintaining a common request
and response object. The request and response objects are expected to represent
Psr\Http\Message\ServerRequestInterface and Psr\Http\Message\
ResponseInterface, respectively.

2.	 For the purposes of this illustration, we define a middleware session validator. The
constants and properties reflect the session thumbprint, which is a term we use
to incorporate factors such as the website visitor's IP address, browser, and
language settings:
namespace Application\MiddleWare\Session;
use InvalidArgumentException;
use Psr\Http\Message\ {
 ServerRequestInterface, ResponseInterface };
use Application\MiddleWare\ { Constants, Response, TextStream };
class Validator
{
 const KEY_TEXT = 'text';
 const KEY_SESSION = 'thumbprint';
 const KEY_STATUS_CODE = 'code';
 const KEY_STATUS_REASON = 'reason';

http://nginx.org/en/docs/http/ngx_http_rewrite_module.html
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html
http://altorouter.com/
https://github.com/baryshev/TreeRoute
https://github.com/nikic/FastRoute
https://github.com/nikic/FastRoute
https://github.com/auraphp/Aura.Router
https://github.com/auraphp/Aura.Router

Chapter 9

343

 const KEY_STOP_TIME = 'stop_time';
 const ERROR_TIME = 'ERROR: session has exceeded stop time';
 const ERROR_SESSION = 'ERROR: thumbprint does not match';
 const SUCCESS_SESSION = 'SUCCESS: session validates OK';
 protected $sessionKey;
 protected $currentPrint;
 protected $storedPrint;
 protected $currentTime;
 protected $storedTime;

3.	 The constructor takes a ServerRequestInterface instance and the session as
arguments. If the session is an array (such as $_SESSION), we wrap it in a class. The
reason why we do this is in case we are passed a session object, such as JSession
used in Joomla. We then create the thumbprint using the previously mentioned
factors. If the stored thumbprint is not available, we assume this is the first time, and
store the current print as well as stop time, if this parameter is set. We used md5()
because it's a fast hash, is not exposed externally, and is therefore useful to this
application:
public function __construct(
 ServerRequestInterface $request, $stopTime = NULL)
{
 $this->currentTime = time();
 $this->storedTime = $_SESSION[self::KEY_STOP_TIME] ?? 0;
 $this->currentPrint =
 md5($request->getServerParams()['REMOTE_ADDR']
 . $request->getServerParams()['HTTP_USER_AGENT']
 . $request->getServerParams()['HTTP_ACCEPT_LANGUAGE']);
 $this->storedPrint = $_SESSION[self::KEY_SESSION]
 ?? NULL;
 if (empty($this->storedPrint)) {
 $this->storedPrint = $this->currentPrint;
 $_SESSION[self::KEY_SESSION] = $this->storedPrint;
 if ($stopTime) {
 $this->storedTime = $stopTime;
 $_SESSION[self::KEY_STOP_TIME] = $stopTime;
 }
 }
}

Developing Middleware

344

4.	 It's not required to define __invoke(), but this magic method is quite
convenient for standalone middleware classes. As is the convention, we accept
ServerRequestInterface and ResponseInterface instances as arguments.
In this method, we simply check to see whether the current thumbprint matches the
one stored. The first time, of course, they will match. But on subsequent requests, the
chances are an attacker intent on session hijacking will be caught out. In addition, if
the session time exceeds the stop time (if set), likewise, a 401 code will be sent:
public function __invoke(
 ServerRequestInterface $request, Response $response)
{
 $code = 401; // unauthorized
 if ($this->currentPrint != $this->storedPrint) {
 $text[self::KEY_TEXT] = self::ERROR_SESSION;
 $text[self::KEY_STATUS_REASON] =
 Constants::STATUS_CODES[401];
 } elseif ($this->storedTime) {
 if ($this->currentTime > $this->storedTime) {
 $text[self::KEY_TEXT] = self::ERROR_TIME;
 $text[self::KEY_STATUS_REASON] =
 Constants::STATUS_CODES[401];
 } else {
 $code = 200; // success
 }
 }
 if ($code == 200) {
 $text[self::KEY_TEXT] = self::SUCCESS_SESSION;
 $text[self::KEY_STATUS_REASON] =
 Constants::STATUS_CODES[200];
 }
 $text[self::KEY_STATUS_CODE] = $code;
 $body = new TextStream(json_encode($text));
 return $response->withStatus($code)->withBody($body);
}

5.	 We can now put our new middleware class to use. The main problems with inter-
framework calls, at least at this point, are summarized here. Accordingly, how we
implement middleware depends heavily on the last point:

�� Not all PHP frameworks are PSR-7-compliant

�� Existing PSR-7 implementations are not complete

�� All frameworks want to be the "boss"

Chapter 9

345

6.	 As an example, have a look at the configuration files for Zend Expressive, which is a
self-proclaimed PSR7 Middleware Microframework. Here is the file, middleware-
pipeline.global.php, which is located in the config/autoload folder in
a standard Expressive application. The dependencies key is used to identify the
middleware wrapper classes that will be activated in the pipeline:
<?php
use Zend\Expressive\Container\ApplicationFactory;
use Zend\Expressive\Helper;
return [
 'dependencies' => [
 'factories' => [
 Helper\ServerUrlMiddleware::class =>
 Helper\ServerUrlMiddlewareFactory::class,
 Helper\UrlHelperMiddleware::class =>
 Helper\UrlHelperMiddlewareFactory::class,
 // insert your own class here
],
],

7.	 Under the middleware_pipline key, you can identify classes that will be executed
before or after the routing process occurs. Optional parameters include path, error,
and priority:
'middleware_pipeline' => [
 'always' => [
 'middleware' => [
 Helper\ServerUrlMiddleware::class,
],
 'priority' => 10000,
],
 'routing' => [
 'middleware' => [
 ApplicationFactory::ROUTING_MIDDLEWARE,
 Helper\UrlHelperMiddleware::class,
 // insert reference to middleware here
 ApplicationFactory::DISPATCH_MIDDLEWARE,
],
 'priority' => 1,
],
 'error' => [
 'middleware' => [
 // Add error middleware here.
],
 'error' => true,

Developing Middleware

346

 'priority' => -10000,
],
],
];

8.	 Another technique is to modify the source code of an existing framework module, and
make a request to a PSR-7-compliant middleware application. Here is an example
modifying a Joomla! installation to include a middleware session validator.

9.	 Next, add this code the end of the index.php file in the /path/to/joomla folder.
Since Joomla! uses Composer, we can leverage the Composer autoloader:
session_start(); // to support use of $_SESSION
$loader = include __DIR__ . '/libraries/vendor/autoload.php';
$loader->add('Application', __DIR__ . '/libraries/vendor');
$loader->add('Psr', __DIR__ . '/libraries/vendor');

10.	 We can then create an instance of our middleware session validator, and make a
validation request just before $app = JFactory::getApplication('site');:

$session = JFactory::getSession();
$request =
 (new Application\MiddleWare\ServerRequest())->initialize();
$response = new Application\MiddleWare\Response();
$validator = new Application\Security\Session\Validator(
 $request, $session);
$response = $validator($request, $response);
if ($response->getStatusCode() != 200) {
 // take some action
}

How it works…
First, create the Application\MiddleWare\Session\Validator test middleware class
described in steps 2-5. Then you will need to go to https://getcomposer.org/ and follow
the directions to obtain Composer. Download it to the /path/to/source/for/this/
chapter folder. Next, build a basic Zend Expressive application, as shown next. Be sure to
select No when prompted for minimal skeleton:

cd /path/to/source/for/this/chapter

php composer.phar create-project zendframework/zend-expressive-skeleton
expressive

https://getcomposer.org/

Chapter 9

347

This will create a folder /path/to/source/for/this/chapter/expressive. Change
to this directory. Modify public/index.php as follows:

<?php
if (php_sapi_name() === 'cli-server'
 && is_file(__DIR__ . parse_url(
$_SERVER['REQUEST_URI'], PHP_URL_PATH))
) {
 return false;
}
chdir(dirname(__DIR__));
session_start();
$_SESSION['time'] = time();
$appDir = realpath(__DIR__ . '/../../..');
$loader = require 'vendor/autoload.php';
$loader->add('Application', $appDir);
$container = require 'config/container.php';
$app = $container->get(\Zend\Expressive\Application::class);
$app->run();

You will then need to create a wrapper class that invokes our session validator middleware.
Create a SessionValidateAction.php file that needs to go in the /path/to/source/
for/this/chapter/expressive/src/App/Action folder. For the purposes of this
illustration, set the stop time parameter to a short duration. In this case, time() + 10 gives
you 10 seconds:

namespace App\Action;
use Application\MiddleWare\Session\Validator;
use Zend\Diactoros\ { Request, Response };
use Psr\Http\Message\ResponseInterface;
use Psr\Http\Message\ServerRequestInterface;
class SessionValidateAction
{
 public function __invoke(ServerRequestInterface $request,
 ResponseInterface $response, callable $next = null)
 {
 $inbound = new Response();
 $validator = new Validator($request, time()+10);
 $inbound = $validator($request, $response);
 if ($inbound->getStatusCode() != 200) {
 session_destroy();
 setcookie('PHPSESSID', 0, time()-300);
 $params = json_decode(
 $inbound->getBody()->getContents(), TRUE);

Developing Middleware

348

 echo '<h1>',$params[Validator::KEY_TEXT],'</h1>';
 echo '<pre>',var_dump($inbound),'</pre>';
 exit;
 }
 return $next($request,$response);
 }
}

You will now need to add the new class to the middleware pipeline. Modify
config/autoload/middleware-pipeline.global.php as follows. Modifications are
shown in bold:

<?php
use Zend\Expressive\Container\ApplicationFactory;
use Zend\Expressive\Helper;
return [
 'dependencies' => [
 'invokables' => [
 App\Action\SessionValidateAction::class =>
 App\Action\SessionValidateAction::class,
],
 'factories' => [
 Helper\ServerUrlMiddleware::class =>
 Helper\ServerUrlMiddlewareFactory::class,
 Helper\UrlHelperMiddleware::class =>
 Helper\UrlHelperMiddlewareFactory::class,
],
],
 'middleware_pipeline' => [
 'always' => [
 'middleware' => [
 Helper\ServerUrlMiddleware::class,
],
 'priority' => 10000,
],
 'routing' => [
 'middleware' => [
 ApplicationFactory::ROUTING_MIDDLEWARE,
 Helper\UrlHelperMiddleware::class,
 App\Action\SessionValidateAction::class,
 ApplicationFactory::DISPATCH_MIDDLEWARE,
],
 'priority' => 1,
],

Chapter 9

349

 'error' => [
 'middleware' => [
 // Add error middleware here.
],
 'error' => true,
 'priority' => -10000,
],
],
];

You might also consider modifying the home page template to show the status of $_SESSION.
The file in question is /path/to/source/for/this/chapter/expressive/templates/
app/home-page.phtml. Simply adding var_dump($_SESSION) should suffice.

Initially, you should see something like this:

Developing Middleware

350

After 10 seconds, refresh the browser. You should now see this:

Using middleware to cross languages
Except in cases where you are trying to communicate between different versions of PHP, PSR-
7 middleware will be of minimal use. Recall what the acronym stands for: PHP Standards
Recommendations. Accordingly, if you need to make a request to an application written in
another language, treat it as you would any other web service HTTP request.

How to do it…
1.	 In the case of PHP 4, you actually have a chance in that there is limited support

for object-oriented programming. Accordingly, the best approach would be to
downgrade the basic PSR-7 classes described in the first three recipes. There is not
enough space to cover all the changes, but we present a potential PHP 4 version of
Application\MiddleWare\ServerRequest. The first thing to note is that there
are no namespaces! Accordingly, we use a classname with underscores, _, in place of
namespace separators:
class Application_MiddleWare_ServerRequest
extends Application_MiddleWare_Request
implements Psr_Http_Message_ServerRequestInterface
{

Chapter 9

351

2.	 All properties are identified in PHP 4 using the key word var:
var $serverParams;
var $cookies;
var $queryParams;
// not all properties are shown

3.	 The initialize() method is almost the same, except that syntax such as $this-
>getServerParams()['REQUEST_URI'] was not allowed in PHP 4. Accordingly,
we need to split this out into a separate variable:
function initialize()
{
 $params = $this->getServerParams();
 $this->getCookieParams();
 $this->getQueryParams();
 $this->getUploadedFiles;
 $this->getRequestMethod();
 $this->getContentType();
 $this->getParsedBody();
 return $this->withRequestTarget($params['REQUEST_URI']);
}

4.	 All of the $_XXX super-globals were present in later versions of PHP 4:
function getServerParams()
{
 if (!$this->serverParams) {
 $this->serverParams = $_SERVER;
 }
 return $this->serverParams;
}
// not all getXXX() methods are shown to conserve space

5.	 The null coalesce operator was only introduced in PHP 7. We need to use
isset(XXX) ? XXX : ''; instead:
function getRequestMethod()
{
 $params = $this->getServerParams();
 $method = isset($params['REQUEST_METHOD'])
 ? $params['REQUEST_METHOD'] : '';
 $this->method = strtolower($method);
 return $this->method;
}

Developing Middleware

352

6.	 The JSON extension was not introduced until PHP 5. Accordingly, we need
to be satisfied with raw input. We could also possibly use serialize() or
unserialize() in place of json_encode() and json_decode():
function getParsedBody()
{
 if (!$this->parsedBody) {
 if (($this->getContentType() ==
 Constants::CONTENT_TYPE_FORM_ENCODED
 || $this->getContentType() ==
 Constants::CONTENT_TYPE_MULTI_FORM)
 && $this->getRequestMethod() ==
 Constants::METHOD_POST)
 {
 $this->parsedBody = $_POST;
 } elseif ($this->getContentType() ==
 Constants::CONTENT_TYPE_JSON
 || $this->getContentType() ==
 Constants::CONTENT_TYPE_HAL_JSON)
 {
 ini_set("allow_url_fopen", true);
 $this->parsedBody =
 file_get_contents('php://stdin');
 } elseif (!empty($_REQUEST)) {
 $this->parsedBody = $_REQUEST;
 } else {
 ini_set("allow_url_fopen", true);
 $this->parsedBody =
 file_get_contents('php://stdin');
 }
 }
 return $this->parsedBody;
}

7.	 The withXXX() methods work pretty much the same in PHP 4:
function withParsedBody($data)
{
 $this->parsedBody = $data;
 return $this;
}

Chapter 9

353

8.	 Likewise, the withoutXXX() methods work the same as well:
function withoutAttribute($name)
{
 if (isset($this->attributes[$name])) {
 unset($this->attributes[$name]);
 }
 return $this;
}

}

9.	 For websites using other languages, we could use the PSR-7 classes to formulate
requests and responses, but would then need to use an HTTP client to communicate
with the other website. As an example, recall the demonstration of a Request
discussed in the recipe Developing a PSR-7 request class from this chapter.
Here is the example from the How it works… section:

$request = new Request(
 TARGET_WEBSITE_URL,
 Constants::METHOD_POST,
 new TextStream($contents),
 [Constants::HEADER_CONTENT_TYPE =>
 Constants::CONTENT_TYPE_FORM_ENCODED,
 Constants::HEADER_CONTENT_LENGTH => $body->getSize()]
);

$data = http_build_query(['data' =>
$request->getBody()->getContents()]);

$defaults = array(
 CURLOPT_URL => $request->getUri()->getUriString(),
 CURLOPT_POST => true,
 CURLOPT_POSTFIELDS => $data,
);
$ch = curl_init();
curl_setopt_array($ch, $defaults);
$response = curl_exec($ch);
curl_close($ch);

355

10
Looking at Advanced

Algorithms

In this chapter, we will cover:

ff Using getters and setters

ff Implementing a linked list

ff Building a bubble sort

ff Implementing a stack

ff Building a binary search class

ff Implementing a search engine

ff Displaying a multi-dimensional array and accumulating totals

Introduction
In this chapter, we cover recipes that implement various advanced algorithms such as linked
list, bubble sort, stacks, and binary search. In addition, we cover getters and setters, as well
as implementing a search engine and displaying values from a multi-dimensional array with
accumulated totals.

Looking at Advanced Algorithms

356

Using getters and setters
At first glance, it would seemingly make sense to define classes with public properties,
which can then be directly read or written. It is considered a best practice, however, to make
properties protected, and to then define a getter and setter for each. As the name implies,
a getter retrieves the value of a property. A setter is used to set the value.

Best practice
Define properties as protected to prevent accidental outside access. Use
public get* and set* methods to provide access to these properties. In
this manner, not only can you more precisely control access, but you can
also make formatting and data type changes to the properties while getting
and setting them.

How to do it…
1.	 Getters and setters provide additional flexibility when getting or setting values.

You are able to add an additional layer of logic if needed, something which would
not be possible if you were to directly read or write a public property. All you need
to do is to create a public method with a prefix of either get or set. The name of
the property becomes the suffix. It is a convention to make the first letter of the
variable uppercase. Thus, if the property is $testValue, the getter would be
getTestValue().

2.	 In this example, we define a class with a protected property, $date. Notice that
the get and set methods allow for treatment as either a DateTime object or as a
string. The value is actually stored in any event as a DateTime instance:
$a = new class() {
 protected $date;
 public function setDate($date)
 {
 if (is_string($date)) {
 $this->date = new DateTime($date);
 } else {
 $this->date = $date;
 }
 }
 public function getDate($asString = FALSE)
 {
 if ($asString) {
 return $this->date->format('Y-m-d H:i:s');
 } else {
 return $this->date;

Chapter 10

357

 }
 }
};

3.	 Getters and setters allow you to filter or sanitize the data coming in or going out. In
the following example, there are two properties, $intVal and $arrVal, which are
set to a default initial value of NULL. Notice that not only are the return values for the
getters data-typed, but they also provide defaults. The setters also either enforce the
incoming data-type, or type-cast the incoming value to a certain data-type:
<?php
class GetSet
{
 protected $intVal = NULL;
 protected $arrVal = NULL;
 // note the use of the null coalesce operator to return a
 default value
 public function getIntVal() : int
 {
 return $this->intVal ?? 0;
 }
 public function getArrVal() : array
 {
 return $this->arrVal ?? array();
 }
 public function setIntVal($val)
 {
 $this->intVal = (int) $val ?? 0;
 }
 public function setArrVal(array $val)
 {
 $this->arrVal = $val ?? array();
 }
}

4.	 If you have a class with lots and lots of properties, it might become tedious to define
a distinct getter and setter for each property. In this case, you can define a kind
of fallback using the magic method __call(). The following class defines nine
different properties. Instead of having to define nine getters and nine setters, we
define a single method, __call(), which makes a determination whether or not the
usage is get or set. If get, it retrieves the key from an internal array. If set, it stores
the value in the internal array.

Looking at Advanced Algorithms

358

The __call()method is a magic method which is executed if an
application makes a call to a non-existent method.

<?php
class LotsProps
{
 protected $firstName = NULL;
 protected $lastName = NULL;
 protected $addr1 = NULL;
 protected $addr2 = NULL;
 protected $city = NULL;
 protected $state = NULL;
 protected $province = NULL;
 protected $postalCode = NULL;
 protected $country = NULL;
 protected $values = array();

 public function __call($method, $params)
 {
 preg_match('/^(get|set)(.*?)$/i', $method, $matches);
 $prefix = $matches[1] ?? '';
 $key = $matches[2] ?? '';
 $key = strtolower($key);
 if ($prefix == 'get') {
 return $this->values[$key] ?? '---';
 } else {
 $this->values[$key] = $params[0];
 }
 }
}

How it works…
Copy the code mentioned in step 1 into a new file, chap_10_oop_using_getters_and_
setters.php. To test the class, add the following:

// set date using a string
$a->setDate('2015-01-01');
var_dump($a->getDate());

// retrieves the DateTime instance
var_dump($a->getDate(TRUE));

Chapter 10

359

// set date using a DateTime instance
$a->setDate(new DateTime('now'));
var_dump($a->getDate());

// retrieves the DateTime instance
var_dump($a->getDate(TRUE));

In the output (shown next), you can see that the $date property can be set using either a
string or an actual DateTime instance. When getDate() is executed, you can return
either a string or a DateTime instance, depending on the value of the $asString flag:

Next, have a look at the code defined in step 2. Copy this code into a file, chap_10_oop_
using_getters_and_setters_defaults.php, and add the following:

// create the instance
$a = new GetSet();

// set a "proper" value
$a->setIntVal(1234);
echo $a->getIntVal();
echo PHP_EOL;

// set a bogus value
$a->setIntVal('some bogus value');

Looking at Advanced Algorithms

360

echo $a->getIntVal();
echo PHP_EOL;

// NOTE: boolean TRUE == 1
$a->setIntVal(TRUE);
echo $a->getIntVal();
echo PHP_EOL;

// returns array() even though no value was set
var_dump($a->getArrVal());
echo PHP_EOL;

// sets a "proper" value
$a->setArrVal(['A','B','C']);
var_dump($a->getArrVal());
echo PHP_EOL;

try {
 $a->setArrVal('this is not an array');
 var_dump($a->getArrVal());
 echo PHP_EOL;
} catch (TypeError $e) {
 echo $e->getMessage();
}

echo PHP_EOL;

As you can see from the following output, setting a proper integer value works as expected. A
non-numeric value defaults to 0. Interestingly, if you supply a Boolean TRUE as an argument
to setIntVal(), it is interpolated to 1.

If you call getArrVal() without setting a value, the default is an empty array. Setting an
array value works as expected. However, if you supply a non-array value as an argument, the
type hint of the array causes a TypeError to be thrown, which can be caught as shown here:

Chapter 10

361

Finally, take the LotsProps class defined in step 3 and place it in a separate file, chap_10_
oop_using_getters_and_setters_magic_call.php. Now add code to set values.
What will happen, of course, is that the magic method __call() is invoked. After running
preg_match(), the remainder of the non-existent property, after the letters set, will become
a key in the internal array $values:

$a = new LotsProps();
$a->setFirstName('Li\'l Abner');
$a->setLastName('Yokum');
$a->setAddr1('1 Dirt Street');
$a->setCity('Dogpatch');
$a->setState('Kentucky');
$a->setPostalCode('12345');
$a->setCountry('USA');
?>

You can then define HTML that displays the values using the corresponding get methods.
These will in turn return keys from the internal array:

<div class="container">
<div class="left blue1">Name</div>
<div class="right yellow1">
<?= $a->getFirstName() . ' ' . $a->getLastName() ?></div>
</div>
<div class="left blue2">Address</div>
<div class="right yellow2">
 <?= $a->getAddr1() ?>

<?= $a->getAddr2() ?>

Looking at Advanced Algorithms

362

<?= $a->getCity() ?>

<?= $a->getState() ?>

<?= $a->getProvince() ?>

<?= $a->getPostalCode() ?>

<?= $a->getCountry() ?>
</div>
</div>

Here is the final output:

Implementing a linked list
A linked list is where one list contains keys that point to keys in another list. An analogy, in
database terms, would be where you have a table that contains data, and a separate index
that points to the data. One index might produce a list of items by ID. Another index might
yield a list according to title and so on. The salient feature of the linked list is that you do not
have to touch the original list of items.

For example, in the diagram shown next, the primary list contains ID numbers and the names
of fruits. If you were to directly output the primary list, the fruit names would display in this
order: Apple, Grape, Banana, Orange, Cherry. If you were to use the linked list as an index, on
the other hand, the resulting output of fruit names would be Apple, Banana, Cherry, Grape,
and Orange:

Chapter 10

363

How to do it…
1.	 One of the primary uses of a linked list is to produce a display of items in a different

order. One approach would be to create an iteration of key value pairs, where the key
represents the new order, and the value contains the value of the key in the primary
list. Such a function might look like this:
function buildLinkedList(array $primary,
 callable $makeLink)
{
 $linked = new ArrayIterator();
 foreach ($primary as $key => $row) {
 $linked->offsetSet($makeLink($row), $key);
 }
 $linked->ksort();
 return $linked;
}

2.	 We use an anonymous function to generate the new key in order to provide extra
flexibility. You will also notice that we do a sort by key (ksort()) so that the linked
list iterates in key order.

3.	 All we need to do to use the linked list is to iterate through it, but produce results from
the primary list, $customer in this example:
foreach ($linked as $key => $link) {
 $output .= printRow($customer[$link]);
}

4.	 Note that in no way do we touch the primary list. This allows us to generate multiple
linked lists, each representing a different order, while retaining our original set of
data.

5.	 Another important use of a linked list is for the purposes of filtering. The technique
is similar to that shown previously. The only difference is that we expand the
buildLinkedList() function, adding a filter column and filter value:
function buildLinkedList(array $primary,
 callable $makeLink,
 $filterCol = NULL,
 $filterVal = NULL)
{
 $linked = new ArrayIterator();
 $filterVal = trim($filterVal);
 foreach ($primary as $key => $row) {
 if ($filterCol) {
 if (trim($row[$filterCol]) == $filterVal) {
 $linked->offsetSet($makeLink($row), $key);

Looking at Advanced Algorithms

364

 }
 } else {
 $linked->offsetSet($makeLink($row), $key);
 }
 }
 $linked->ksort();
 return $linked;
}

6.	 We only include items in the linked list where the value represented by $filterCol
in the primary list matches $filterVal. The iteration logic is the same as that
shown in step 2.

7.	 Finally, another form of linked list is the doubly linked list. In this case, the list
is constructed in such a manner that the iteration can occur in either a forward
or reverse direction. In the case of PHP, we are fortunate to have an SPL class,
SplDoublyLinkedList, which neatly does the trick. Here is a function that builds a
doubly linked list:

function buildDoublyLinkedList(ArrayIterator $linked)
{
 $double = new SplDoublyLinkedList();
 foreach ($linked as $key => $value) {
 $double->push($value);
 }
 return $double;
}

The terminology for SplDoublyLinkedList can be misleading.
SplDoublyLinkedList::top() actually points to the end of the list,
whereas SplDoublyLinkedList::bottom() points to the beginning!

How it works…
Copy the code shown in the first bullet into a file, chap_10_linked_list_include.
php. In order to demonstrate the use of a linked list, you will need a source of data. For
this illustration, you can make use of the customer.csv file that was mentioned in earlier
recipes. It is a CSV file with the following columns:

"id","name","balance","email","password","status","security_question",
"confirm_code","profile_id","level"

Chapter 10

365

You can add the following functions to the include file mentioned previously to generate a
primary list of customers, and to display information about them. Note that we use the first
column, id as the primary key:

function readCsv($fn, &$headers)
{
 if (!file_exists($fn)) {
 throw new Error('File Not Found');
 }
 $fileObj = new SplFileObject($fn, 'r');
 $result = array();
 $headers = array();
 $firstRow = TRUE;
 while ($row = $fileObj->fgetcsv()) {
 // store 1st row as headers
 if ($firstRow) {
 $firstRow = FALSE;
 $headers = $row;
 } else {
 if ($row && $row[0] !== NULL && $row[0] !== 0) {
 $result[$row[0]] = $row;
 }
 }
 }
 return $result;
}

function printHeaders($headers)
{
 return sprintf('%4s : %18s : %8s : %32s : %4s' . PHP_EOL,
 ucfirst($headers[0]),
 ucfirst($headers[1]),
 ucfirst($headers[2]),
 ucfirst($headers[3]),
 ucfirst($headers[9]));
}

function printRow($row)
{
 return sprintf('%4d : %18s : %8.2f : %32s : %4s' . PHP_EOL,
 $row[0], $row[1], $row[2], $row[3], $row[9]);
}

Looking at Advanced Algorithms

366

function printCustomer($headers, $linked, $customer)
{
 $output = '';
 $output .= printHeaders($headers);
 foreach ($linked as $key => $link) {
 $output .= printRow($customer[$link]);
 }
 return $output;
}

You can then define a calling program, chap_10_linked_list_in_order.php, which
includes the file defined previously, and reads customer.csv:

<?php
define('CUSTOMER_FILE', __DIR__ . '/../data/files/customer.csv');
include __DIR__ . '/chap_10_linked_list_include.php';
$headers = array();
$customer = readCsv(CUSTOMER_FILE, $headers);

You can then define an anonymous function that will produce a key in the linked list. In this
illustration, define a function that breaks down column 1 (name) into first and last names:

$makeLink = function ($row) {
 list($first, $last) = explode(' ', $row[1]);
 return trim($last) . trim($first);
};

You can then call the function to build the linked list, and use printCustomer() to display
the results:

$linked = buildLinkedList($customer, $makeLink);
echo printCustomer($headers, $linked, $customer);

Here is how the output might appear:

Chapter 10

367

To produce a filtered result, modify buildLinkedList() as discussed in step 4. You can
then add logic that checks to see whether the value of the filter column matches the value in
the filter:

define('LEVEL_FILTER', 'INT');

$filterCol = 9;
$filterVal = LEVEL_FILTER;
$linked = buildLinkedList($customer, $makeLink, $filterCol,
$filterVal);

There's more…
PHP 7.1 introduced the use of [] as an alternative to list(). If you look at the anonymous
function mentioned previously, you could rewrite this in PHP 7.1 as follows:

$makeLink = function ($row) {
 [$first, $last] = explode(' ', $row[1]);
 return trim($last) . trim($first);
};

For more information, see https://wiki.php.net/rfc/short_list_syntax.

https://wiki.php.net/rfc/short_list_syntax

Looking at Advanced Algorithms

368

Building a bubble sort
The classic bubble sort is an exercise often assigned to university students. Nonetheless, it's
important to master this algorithm as there are many occasions where built-in PHP sorting
functions do not apply. An example would be sorting a multi-dimensional array where the sort
key is not the first column.

The way the bubble sort works is to recursively iterate through the list and swap the current
value with the next value. If you want items to be in ascending order, the swap occurs if the
next item is less than the current item. For descending order, the swap occurs if the reverse is
true. The sort is concluded when no more swaps occur.

In the following diagram, after the first pass, Grape and Banana are swapped, as are Orange
and Cherry. After the 2nd pass, Grape and Cherry are swapped. No more swaps occur on the
last pass, and the bubble sort ends:

How to do it…
1.	 We do not want to actually move the values around in the array; that would be horribly

expensive in terms of resource usage. Instead, we will use a linked list, discussed in
the previous recipe.

2.	 First we build a linked list using the buildLinkedList() function discussed in the
previous recipe.

3.	 We then define a new function, bubbleSort(), which accepts the linked list by
reference, the primary list, a sort field, and a parameter that represents sort order
(ascending or descending):
function bubbleSort(&$linked, $primary, $sortField, $order = 'A')
{

4.	 The variables needed include one that represents the number of iterations, the
number of swaps, and an iterator based upon the linked list:
 static $iterations = 0;
 $swaps = 0;
 $iterator = new ArrayIterator($linked);

Chapter 10

369

5.	 In the while() loop, we only proceed if the iteration is still valid, which is to say
still in progress. We then obtain the current key and value, and the next key and
value. Note the extra if() statement to ensure the iteration is still valid (that is, to
make sure we don't drop off the end of the list!):
while ($iterator->valid()) {
 $currentLink = $iterator->current();
 $currentKey = $iterator->key();
 if (!$iterator->valid()) break;
 $iterator->next();
 $nextLink = $iterator->current();
 $nextKey = $iterator->key();

6.	 Next we check to see whether the sort is to be ascending or descending. Depending
on the direction, we check to see whether the next value is greater than, or less than,
the current value. The result of the comparison is stored in $expr:
if ($order == 'A') {
 $expr = $primary[$linked->offsetGet
 ($currentKey)][$sortField] >
 $primary[$linked->offsetGet($nextKey)][$sortField];
} else {
 $expr = $primary[$linked->offsetGet
 ($currentKey)][$sortField] <
 $primary[$linked->offsetGet($nextKey)][$sortField];
}

7.	 If the value of $expr is TRUE, and we have valid current and next keys, the values
are swapped in the linked list. We also increment $swaps:
if ($expr && $currentKey && $nextKey
 && $linked->offsetExists($currentKey)
 && $linked->offsetExists($nextKey)) {
 $tmp = $linked->offsetGet($currentKey);
 $linked->offsetSet($currentKey,
 $linked->offsetGet($nextKey));
 $linked->offsetSet($nextKey, $tmp);
 $swaps++;
 }
}

8.	 Finally, if any swaps have occurred, we need to run through the iteration again, until
there are no more swaps. Accordingly, we make a recursive call to the same method:
if ($swaps) bubbleSort($linked, $primary, $sortField, $order);

9.	 The real return value is the re-organized linked list. We also return the number of
iterations just for reference:

 return ++$iterations;
}

Looking at Advanced Algorithms

370

How it works…
Add the bubbleSort() function discussed previously to the include file created in the
previous recipe. You can use the same logic discussed in the previous recipe to read the
customer.csv file, producing a primary list:

<?php
define('CUSTOMER_FILE', __DIR__ . '/../data/files/customer.csv');
include __DIR__ . '/chap_10_linked_list_include.php';
$headers = array();
$customer = readCsv(CUSTOMER_FILE, $headers);

You can then produce a linked list using the first column as a sort key:

$makeLink = function ($row) {
 return $row[0];
};
$linked = buildLinkedList($customer, $makeLink);

Finally, call the bubbleSort() function, providing the linked list and customer list
as arguments. You can also provide a sort column, in this illustration column 2, that
represents the account balance, using the letter 'A' to indicate ascending order. The
printCustomer() function can be used to display output:

echo 'Iterations: ' . bubbleSort($linked,
 $customer, 2, 'A') . PHP_EOL;
echo printCustomer($headers, $linked, $customer);

Here is an example of the output:

Chapter 10

371

Implementing a stack
A stack is a simple algorithm normally implemented as Last In First Out (LIFO). Think of a
stack of books sitting on a library table. When the librarian goes to restore the books to their
place, the topmost book is processed first, and so on in order, until the book at the bottom of
the stack has been replaced. The topmost book was the last one to be placed on the stack,
thus last in first out.

In programming terms, a stack is used to temporarily store information. The retrieval order
facilitates retrieving the most recent item first.

How to do it…
1.	 First we define a class, Application\Generic\Stack. The core logic is

encapsulated in an SPL class, SplStack:
namespace Application\Generic;
use SplStack;
class Stack
{
 // code
}

2.	 Next we define a property to represent the stack, and set up an SplStack instance:
protected $stack;
public function __construct()
{
 $this->stack = new SplStack();
}

3.	 After that we define methods to add and remove from the stack, the classic push()
and pop() methods:
public function push($message)
{
 $this->stack->push($message);
}
public function pop()
{
 return $this->stack->pop();
}

Looking at Advanced Algorithms

372

4.	 We also throw in an implementation of __invoke() that returns an instance of the
stack property. This allows us to use the object in a direct function call:

public function __invoke()
{
 return $this->stack;
}

How it works…
One possible use for a stack is to store messages. In the case of messages, it is usually
desirable to retrieve the latest first, thus it is a perfect use case for a stack. Define the
Application\Generic\Stack class as discussed in this recipe. Next, define a calling
program that sets up autoloading and creates an instance of the stack:

<?php
// setup class autoloading
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Generic\Stack;
$stack = new Stack();

To do something with the stack, store a series of messages. As you would most likely store
messages at different points in your application, you can use sleep() to simulate other code
running:

echo 'Do Something ... ' . PHP_EOL;
$stack->push('1st Message: ' . date('H:i:s'));
sleep(3);

echo 'Do Something Else ... ' . PHP_EOL;
$stack->push('2nd Message: ' . date('H:i:s'));
sleep(3);

echo 'Do Something Else Again ... ' . PHP_EOL;
$stack->push('3rd Message: ' . date('H:i:s'));
sleep(3);

Finally, simply iterate through the stack to retrieve messages. Note that you can call the stack
object as if it were a function, which returns the SplStack instance:

echo 'What Time Is It?' . PHP_EOL;
foreach ($stack() as $item) {
 echo $item . PHP_EOL;
}

Chapter 10

373

Here is the expected output:

Building a binary search class
Conventional searches often proceed through the list of items in a sequential manner. This
means that the maximum possible number of items to be searched could be the same as
the length of the list! This is not very efficient. If you need to expedite a search, consider
implementing a binary search.

The technique is quite simple: you find the midpoint in the list, and determine whether the
search item is less than, equal to, or greater than the midpoint item. If less, you set the upper
limit to the midpoint, and search only the first half of the list. If greater, set the lower limit to
the midpoint, and search only the last half of the list. You would then proceed to divide the list
into 1/4, 1/8, 1/16, and so on, until the search item is found (or not).

It's important to note that although the maximum number of comparisons
is considerably smaller than a sequential search (log n + 1 where n is the
number of elements in the list, and log is the binary logarithm), the list
involved in the search must first be sorted, which of course downgrades
performance.

How to do it…
1.	 We first construct a search class, Application\Generic\Search, which

accepts the primary list as an argument. As a control, we also define a property,
$iterations:
namespace Application\Generic;
class Search
{

Looking at Advanced Algorithms

374

 protected $primary;
 protected $iterations;
 public function __construct($primary)
 {
 $this->primary = $primary;
 }

2.	 Next we define a method, binarySearch(), which sets up the search
infrastructure. The first order of business is to build a separate array, $search,
where the key is a composite of the columns included in the search. We then sort by
key:
public function binarySearch(array $keys, $item)
{
 $search = array();
 foreach ($this->primary as $primaryKey => $data) {
 $searchKey = function ($keys, $data) {
 $key = '';
 foreach ($keys as $k) $key .= $data[$k];

 return $key;
 };
 $search[$searchKey($keys, $data)] = $primaryKey;
 }
 ksort($search);

3.	 We then pull out the keys into another array, $binary, so that we can perform the
binary sort based on numeric keys. We then call doBinarySearch(), which results
in a key from our intermediary array $search, or a Boolean, FALSE:
 $binary = array_keys($search);
 $result = $this->doBinarySearch($binary, $item);
 return $this->primary[$search[$result]] ?? FALSE;
}

4.	 The first doBinarySearch() initializes a series of parameters. $iterations,
$found, $loop, $done, and $max are all used to prevent an endless loop. $upper
and $lower represent the slice of the list to be examined:
public function doBinarySearch($binary, $item)
{
 $iterations = 0;
 $found = FALSE;
 $loop = TRUE;
 $done = -1;
 $max = count($binary);
 $lower = 0;
 $upper = $max - 1;

Chapter 10

375

5.	 We then implement a while() loop and set the midpoint:
 while ($loop && !$found) {
 $mid = (int) (($upper - $lower) / 2) + $lower;

6.	 We now get to use the new PHP 7 spaceship operator, which gives us, in a single
comparison, less than, equal to, or greater than. If less, we set the upper limit to the
midpoint. If greater, the lower limit is adjusted to the midpoint. If equal, we're done
and home free:
switch ($item <=> $binary[$mid]) {
 // $item < $binary[$mid]
 case -1 :
 $upper = $mid;
 break;
 // $item == $binary[$mid]
 case 0 :
 $found = $binary[$mid];
 break;
 // $item > $binary[$mid]
 case 1 :
 default :
 $lower = $mid;
}

7.	 Now for a bit of loop control. We increment the number of iterations and make sure it
does not exceed the size of the list. If so, something is definitely wrong and we need
to bail out. Otherwise, we check to see whether the upper and lower limits are the
same more than twice in a row, in which case the search item has not been found.
Then we store the number of iterations and return whatever was found (or not):

 $loop = (($iterations++ < $max) && ($done < 1));
 $done += ($upper == $lower) ? 1 : 0;
 }
 $this->iterations = $iterations;
 return $found;
}

Looking at Advanced Algorithms

376

How it works…
First, implement the Application\Generic\Search class defining the methods described
in this recipe. Next, define a calling program, chap_10_binary_search.php, which sets
up autoloading and reads the customer.csv file as a search target (as discussed in the
previous recipe):

<?php
define('CUSTOMER_FILE', __DIR__ . '/../data/files/customer.csv');
include __DIR__ . '/chap_10_linked_list_include.php';
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Generic\Search;
$headers = array();
$customer = readCsv(CUSTOMER_FILE, $headers);

You can then create a new Search instance, and specify an item somewhere in the middle of
the list. In this illustration, the search is based on column 1, customer name, and the item is
Todd Lindsey:

$search = new Search($customer);
$item = 'Todd Lindsey';
$cols = [1];
echo "Searching For: $item\n";
var_dump($search->binarySearch($cols, $item));

For illustration, add this line just before switch() in Application\Generic\
Search::doBinarySearch():

echo 'Upper:Mid:Lower:<=> | ' . $upper . ':' . $mid . ':' .
 $lower . ':' . ($item <=> $binary[$mid]);

The output is shown here. Notice how the upper, middle, and lower limits adjust until the item
is found:

Chapter 10

377

See also
For more information on binary search, there is an excellent article on Wikipedia that goes
through the basic math at https://en.wikipedia.org/wiki/Binary_search_
algorithm.

Implementing a search engine
In order to implement a search engine, we need to make provision for multiple columns to be
included in the search. In addition, it's important to recognize that the search item might be
found in the middle of the field, and that very rarely will users provide enough information for
an exact match. Accordingly, we will rely heavily on the SQL LIKE %value% clause.

How to do it…
1.	 First, we define a basic class to hold search criteria. The object contains three

properties: the key, which ultimately represents a database column; the operator
(LIKE, <, >, and so on); and optionally an item. The reason why an item is optional is
that some operators, such as IS NOT NULL, do not require specific data:
namespace Application\Database\Search;
class Criteria
{
 public $key;
 public $item;

https://en.wikipedia.org/wiki/Binary_search_algorithm
https://en.wikipedia.org/wiki/Binary_search_algorithm

Looking at Advanced Algorithms

378

 public $operator;
 public function __construct($key, $operator, $item = NULL)
 {
 $this->key = $key;
 $this->operator = $operator;
 $this->item = $item;
 }
}

2.	 Next we need to define a class, Application\Database\Search\Engine,
and provide the necessary class constants and properties. The difference between
$columns and $mapping is that $columns holds information that will ultimately
appear in an HTML SELECT field (or the equivalent). For security reasons, we do not
want to expose the actual names of the database columns, thus the need for another
array $mapping:
namespace Application\Database\Search;
use PDO;
use Application\Database\Connection;
class Engine
{
 const ERROR_PREPARE = 'ERROR: unable to prepare statement';
 const ERROR_EXECUTE = 'ERROR: unable to execute statement';
 const ERROR_COLUMN = 'ERROR: column name not on list';
 const ERROR_OPERATOR= 'ERROR: operator not on list';
 const ERROR_INVALID = 'ERROR: invalid search criteria';

 protected $connection;
 protected $table;
 protected $columns;
 protected $mapping;
 protected $statement;
 protected $sql = '';

3.	 Next, we define a set of operators we are willing to support. The key represents actual
SQL. The value is what will appear in the form:
 protected $operators = [
 'LIKE' => 'Equals',
 '<' => 'Less Than',
 '>' => 'Greater Than',
 '<>' => 'Not Equals',
 'NOT NULL' => 'Exists',
];

Chapter 10

379

4.	 The constructor accepts a database connection instance as an argument. For our
purposes, we will use Application\Database\Connection, defined in Chapter
5, Interacting with a Database. We also need to provide the name of the database
table, as well as $columns, an array of arbitrary column keys and labels, which will
appear in the HTML form. This will reference $mapping, where the key matches
$columns, but where the value represents actual database column names:
public function __construct(Connection $connection,
 $table, array $columns, array $mapping)
{
 $this->connection = $connection;
 $this->setTable($table);
 $this->setColumns($columns);
 $this->setMapping($mapping);
}

5.	 After the constructor, we provide a series of useful getters and setters:
public function setColumns($columns)
{
 $this->columns = $columns;
}
public function getColumns()
{
 return $this->columns;
}
// etc.

6.	 Probably the most critical method is the one that builds the SQL statement to be
prepared. After the initial SELECT setup, we add a WHERE clause, using $mapping
to add the actual database column name. We then add the operator and implement
switch() which, based on the operator, may or may not add a named placeholder
that will represent the search item:
public function prepareStatement(Criteria $criteria)
{
 $this->sql = 'SELECT * FROM ' . $this->table . ' WHERE ';
 $this->sql .= $this->mapping[$criteria->key] . ' ';
 switch ($criteria->operator) {
 case 'NOT NULL' :
 $this->sql .= ' IS NOT NULL OR ';
 break;
 default :
 $this->sql .= $criteria->operator . ' :'
 . $this->mapping[$criteria->key] . ' OR ';
 }

Looking at Advanced Algorithms

380

7.	 Now that the core SELECT has been defined, we remove any trailing OR keywords,
and add a clause that causes the result to be sorted according to the search column.
The statement is then sent to the database to be prepared:
 $this->sql = substr($this->sql, 0, -4)
 . ' ORDER BY ' . $this->mapping[$criteria->key];
 $statement = $this->connection->pdo->prepare($this->sql);
 return $statement;
}

8.	 We are now ready to move on to the main show, the search() method. We accept
an Application\Database\Search\Criteria object as an argument. This
ensures that we have an item key and operator at a minimum. To be on the safe side,
we add an if() statement to check these properties:
public function search(Criteria $criteria)
{
 if (empty($criteria->key) || empty($criteria->operator)) {
 yield ['error' => self::ERROR_INVALID];
 return FALSE;
 }

9.	 We then call prepareStatement() using try / catch to trap errors:
try {
 if (!$statement = $this->prepareStatement($criteria)) {
 yield ['error' => self::ERROR_PREPARE];
 return FALSE;
}

10.	 Next we build an array of parameters that will be supplied to execute().
The key represents the database column name that was used as a placeholder
in the prepared statement. Note that instead of using =, we use the LIKE
%value% construct:
$params = array();
switch ($criteria->operator) {
 case 'NOT NULL' :
 // do nothing: already in statement
 break;
 case 'LIKE' :
 $params[$this->mapping[$criteria->key]] =
 '%' . $criteria->item . '%';
 break;
 default :
 $params[$this->mapping[$criteria->key]] =
 $criteria->item;
}

Chapter 10

381

11.	 The statement is executed, and the results returned using the yield keywords,
which effectively turns this method into a generator:

 $statement->execute($params);
 while ($row = $statement->fetch(PDO::FETCH_ASSOC)) {
 yield $row;
 }
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(self::ERROR_EXECUTE);
 }
 return TRUE;
}

How it works…
Place the code discussed in this recipe in the files Criteria.php and Engine.php under
Application\Database\Search. You can then define a calling script, chap_10_search_
engine.php, which sets up autoloading. You can take advantage of the Application\
Database\Connection class discussed in Chapter 5, Interacting with a Database, and the
form element classes covered in Chapter 6, Building Scalable Websites:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

use Application\Database\Connection;
use Application\Database\Search\ { Engine, Criteria };
use Application\Form\Generic;
use Application\Form\Element\Select;

You can now define which database columns will appear in the form, and a matching
mapping file:

$dbCols = [
 'cname' => 'Customer Name',
 'cbal' => 'Account Balance',
 'cmail' => 'Email Address',
 'clevel' => 'Level'
];

$mapping = [
 'cname' => 'name',
 'cbal' => 'balance',
 'cmail' => 'email',
 'clevel' => 'level'
];

Looking at Advanced Algorithms

382

You can now set up the database connection and create the search engine instance:

$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$engine = new Engine($conn, 'customer', $dbCols, $mapping);

In order to display the appropriate drop-down SELECT elements, we define wrappers and
elements based on Application\Form* classes:

$wrappers = [
 Generic::INPUT => ['type' => 'td', 'class' => 'content'],
 Generic::LABEL => ['type' => 'th', 'class' => 'label'],
 Generic::ERRORS => ['type' => 'td', 'class' => 'error']
];

// define elements
$fieldElement = new Select('field',
 Generic::TYPE_SELECT,
 'Field',
 $wrappers,
 ['id' => 'field']);
 $opsElement = new Select('ops',
 Generic::TYPE_SELECT,
 'Operators',
 $wrappers,
 ['id' => 'ops']);
 $itemElement = new Generic('item',
 Generic::TYPE_TEXT,
 'Searching For ...',
 $wrappers,
 ['id' => 'item','title' => 'If more than one item,
 separate with commas']);
 $submitElement = new Generic('submit',
 Generic::TYPE_SUBMIT,
 'Search',
 $wrappers,
 ['id' => 'submit','title' => 'Click to Search',
 'value' => 'Search']);

Chapter 10

383

We then get input parameters (if defined), set form element options, create search criteria,
and run the search:

$key = (isset($_GET['field']))
? strip_tags($_GET['field']) : NULL;
$op = (isset($_GET['ops'])) ? $_GET['ops'] : NULL;
$item = (isset($_GET['item'])) ? strip_tags($_GET['item']) : NULL;
$fieldElement->setOptions($dbCols, $key);
$itemElement->setSingleAttribute('value', $item);
$opsElement->setOptions($engine->getOperators(), $op);
$criteria = new Criteria($key, $op, $item);
$results = $engine->search($criteria);
?>

The display logic mainly orients towards rendering the form. A more thorough presentation is
discussed in Chapter 6, Building Scalable Websites, but we show the core logic here:

 <form name="search" method="get">
 <table class="display" cellspacing="0" width="100%">
 <tr><?= $fieldElement->render(); ?></tr>
 <tr><?= $opsElement->render(); ?></tr>
 <tr><?= $itemElement->render(); ?></tr>
 <tr><?= $submitElement->render(); ?></tr>
 <tr>
 <th class="label">Results</th>
 <td class="content" colspan=2>

 <table>
 <?php foreach ($results as $row) : ?>
 <tr>
 <td><?= $row['id'] ?></td>
 <td><?= $row['name'] ?></td>
 <td><?= $row['balance'] ?></td>
 <td><?= $row['email'] ?></td>
 <td><?= $row['level'] ?></td>
 </tr>
 <?php endforeach; ?>
 </table>

 </td>
 </tr>
 </table>
 </form>

Looking at Advanced Algorithms

384

Here is sample output from a browser:

Displaying a multi-dimensional array and
accumulating totals

How to properly display data from a multi-dimensional array has been a classic problem for
any web developer. For illustration, assume you wish to display a list of customers and their
purchases. For each customer, you wish to show their name, phone number, account balance,
and so on. This already represents a two dimensional array where the x axis represents
customers and the y axis represents data for that customer. Now add in purchases and you
have a third axis! How can you represent a 3D model on a 2D screen? One possible solution
would be to incorporate "hidden" division tags with a simple JavaScript visibility toggle.

How to do it…
1.	 First we need to generate a 3D array from a SQL statement that uses a number

of JOIN clauses. We will use the Application/Database/Connection class
introduced in Chapter 1, Building a Foundation, to formulate an appropriate SQL
query. We leave two parameters open, min and max, in order to support pagination.
Unfortunately, we cannot use a simple LIMIT and OFFSET in this case, as the
number of rows will vary depending on the number of purchases for any given
customer. Accordingly, we can restrict the number of rows by placing restrictions
on the customer ID that presumably (hopefully) is incremental. To make this work
properly, we also need to set the primary ORDER to customer ID:
define('ITEMS_PER_PAGE', 6);
define('SUBROWS_PER_PAGE', 6);
define('DB_CONFIG_FILE', '/../config/db.config.php');
include __DIR__ . '/../Application/Database/Connection.php';

Chapter 10

385

use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$sql = 'SELECT c.id,c.name,c.balance,c.email,f.phone, '
 . 'u.transaction,u.date,u.quantity,u.sale_price,r.title '
 . 'FROM customer AS c '
 . 'JOIN profile AS f '
 . 'ON f.id = c.id '
 . 'JOIN purchases AS u '
 . 'ON u.customer_id = c.id '
 . 'JOIN products AS r '
 . 'ON u.product_id = r.id '
 . 'WHERE c.id >= :min AND c.id < :max '
 . 'ORDER BY c.id ASC, u.date DESC ';

2.	 Next we can implement a form of pagination, based on restrictions on the customer
ID, using simple $_GET parameters. Note that we add an extra check to make sure
the value of $prev does not go below zero. You might consider adding another
control that ensures the value of $next does not go beyond the last customer ID. In
this illustration, we just allow it to increment:
$page = $_GET['page'] ?? 1;
$page = (int) $page;
$next = $page + 1;
$prev = $page - 1;
$prev = ($prev >= 0) ? $prev : 0;

3.	 We then calculate the values for $min and $max, and prepare and execute the SQL
statement:
$min = $prev * ITEMS_PER_PAGE;
$max = $page * ITEMS_PER_PAGE;
$stmt = $conn->pdo->prepare($sql);
$stmt->execute(['min' => $min, 'max' => $max]);

4.	 A while() loop can be used to fetch results. We use a simple fetch mode of
PDO::FETCH_ASSOC for the purpose of this example. Using the customer ID as a
key, we store basic customer information as array parameters. We then store an array
of purchase information in a sub-array, $results[$key]['purchases'][]. When
the customer ID changes, it's a signal to store the same information for the next
customer. Note that we accumulate totals per customer in an array key total:
$custId = 0;
$result = array();
$grandTotal = 0.0;
while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 if ($row['id'] != $custId) {
 $custId = $row['id'];
 $result[$custId] = [

Looking at Advanced Algorithms

386

 'name' => $row['name'],
 'balance' => $row['balance'],
 'email' => $row['email'],
 'phone' => $row['phone'],
];
 $result[$custId]['total'] = 0;
 }
 $result[$custId]['purchases'][] = [
 'transaction' => $row['transaction'],
 'date' => $row['date'],
 'quantity' => $row['quantity'],
 'sale_price' => $row['sale_price'],
 'title' => $row['title'],
];
 $result[$custId]['total'] += $row['sale_price'];
 $grandTotal += $row['sale_price'];
}
?>

5.	 Next we implement the view logic. First, we start with a block that displays primary
customer information:
<div class="container">
<?php foreach ($result as $key => $data) : ?>
<div class="mainLeft color0">
 <?= $data['name'] ?> [<?= $key ?>]
</div>
<div class="mainRight">
 <div class="row">
 <div class="left">Balance</div>
 <div class="right"><?= $data['balance']; ?></div>
 </div>
 <div class="row">
 <div class="left color2">Email</div>
 <div class="right"><?= $data['email']; ?></div>
 </div>
 <div class="row">
 <div class="left">Phone</div>
 <div class="right"><?= $data['phone']; ?></div>
 </div>
 <div class="row">
 <div class="left color2">Total Purchases</div>
 <div class="right">
<?= number_format($data['total'],2); ?>
</div>
 </div>

Chapter 10

387

6.	 Next comes the logic to display a list of purchases for this customer:
<!-- Purchases Info -->
<table>
 <tr>
 <th>Transaction</th><th>Date</th><th>Qty</th>
 <th>Price</th><th>Product</th>
 </tr>
 <?php $count = 0; ?>
 <?php foreach ($data['purchases'] as $purchase) : ?>
 <?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>
 <tr>
 <td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['date'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['quantity'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['sale_price'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['title'] ?></td>
 </tr>
 <?php endforeach; ?>
</table>

7.	 For the purposes of pagination, we then add buttons to represent previous and next:
<?php endforeach; ?>
<div class="container">
 <a href="?page=<?= $prev ?>">
 <input type="button" value="Previous">
 <a href="?page=<?= $next ?>">
 <input type="button" value="Next" class="buttonRight">
</div>
<div class="clearRow"></div>
</div>

8.	 The result so far, unfortunately, is nowhere near neat and tidy! Accordingly we add
a simple JavaScript function to toggle the visibility of a <div> tag based on its id
attribute:
<script type="text/javascript">
function showOrHide(id) {
 var div = document.getElementById(id);
 div.style.display = div.style.display == "none" ?
 "block" : "none";
}
</script>

Looking at Advanced Algorithms

388

9.	 Next we wrap the purchases table inside an initially invisible <div> tag. Then, we can
place a limit of how many sub-rows are initially visible, and add a link that reveals the
remaining purchase data:
<div class="row" id="<?= 'purchase' . $key ?>"
style="display:none;">
 <table>
 <tr>
 <th>Transaction</th><th>Date</th><th>Qty</th>
 <th>Price</th><th>Product</th>
 </tr>
 <?php $count = 0; ?>
 <?php $first = TRUE; ?>
 <?php foreach ($data['purchases'] as $purchase) : ?>
 <?php if ($count > SUBROWS_PER_PAGE && $first) : ?>
 <?php $first = FALSE; ?>
 <?php $subId = 'subrow' . $key; ?>
 </table>
 <a href="#" onClick="showOrHide('<?= $subId ?>')">More
 <div id="<?= $subId ?>" style="display:none;">
 <table>
 <?php endif; ?>
 <?php $class = ($count++ & 01) ? 'color1' : 'color2'; ?>
 <tr>
 <td class="<?= $class ?>"><?= $purchase['transaction'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['date'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['quantity'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['sale_price'] ?></td>
 <td class="<?= $class ?>"><?= $purchase['title'] ?></td>
 </tr>
 <?php endforeach; ?>
 </table>
 <?php if (!$first) : ?></div><?php endif; ?>
</div>

10.	 We then add a button that, when clicked, reveals the hidden <div> tag:

<input type="button" value="Purchases" class="buttonRight"
 onClick="showOrHide('<?= 'purchase' . $key ?>')">

How it works…
Place the code described in steps 1 to 5 into a file, chap_10_html_table_multi_array_
hidden.php.

Just inside the while() loop, add the following:

printf('%6s : %20s : %8s : %20s' . PHP_EOL,
 $row['id'], $row['name'], $row['transaction'], $row['title']);

Chapter 10

389

Just after the while() loop, add an exit command. Here is the output:

You will notice that the basic customer information, such as the ID and name, repeats for
each result row, but purchase information, such as transaction and product title, varies. Go
ahead and remove the printf() statement.

Replace the exit command with the following:

echo '<pre>', var_dump($result), '</pre>'; exit;

Here is how the newly composed 3D array looks:

Looking at Advanced Algorithms

390

You can now add the display logic shown in steps 5 to 7. As mentioned, although you are now
showing all data, the visual display is not helpful. Now go ahead and add the refinements
mentioned in the remaining steps. Here is how the initial output might appear:

When the Purchases button is clicked, initial purchase info appears. If the link to More is
clicked, the remaining purchase information shows:

391

Implementing Software
Design Patterns

In this chapter, we will cover the following topics:

ff Creating an array to object hydrator

ff Building an object to array hydrator

ff Implementing a strategy pattern

ff Defining a mapper

ff Implementing object-relational mapping

ff Implementing the Pub/Sub design pattern

Introduction
The idea of incorporating software design patterns into object-oriented programming
(OOP) code was first discussed in a seminal work entitled Design Patterns: Elements of
Reusable Object-Oriented Software, authored by the famous Gang of Four (E. Gamma, R.
Helm, R. Johnson, and J. Vlissides) in 1994. Defining neither standards nor protocols, this
work identified common generic software designs that have proven useful over the years. The
patterns discussed in this book are generally thought to fall into three categories: creational,
structural, and behavioral.

11

Implementing Software Design Patterns

392

Examples of many of these patterns have already been presented in this book. Here is a brief
summary:

Design pattern Chapter Recipe
Singleton 2 Defining visibility
Factory 6 Implementing a form factory
Adapter 8 Handling translation without gettext()
Proxy 7 Creating a simple REST client

Creating a simple SOAP client
Iterator 2

3

Recursive directory iterator

Using iterators

In this chapter, we will examine a number of additional design patterns, focusing primarily on
Concurrency and Architectural patterns.

Creating an array to object hydrator
The Hydrator pattern is a variation of the Data Transfer Object design pattern. Its design
principle is quite simple: moving data from one place to another. In this illustration, we will
define classes to move data from an array to an object.

How to do it…
1.	 First, we define a Hydrator class that is able to use getters and setters. For this

illustration we will use Application\Generic\Hydrator\GetSet:
namespace Application\Generic\Hydrator;
class GetSet
{
 // code
}

2.	 Next, we define a hydrate() method, which takes both an array and an object as
arguments. It then calls the setXXX() methods on the object to populate it with
values from the array. We use get_class() to determine the object's class, and
then get_class_methods() to get a list of all methods. preg_match() is used
to match the method prefix and its suffix, which is subsequently assumed to be the
array key:

public static function hydrate(array $array, $object)
{
 $class = get_class($object);
 $methodList = get_class_methods($class);

Chapter 11

393

 foreach ($methodList as $method) {
 preg_match('/^(set)(.*?)$/i', $method, $matches);
 $prefix = $matches[1] ?? '';
 $key = $matches[2] ?? '';
 $key = strtolower(substr($key, 0, 1)) . substr($key, 1);
 if ($prefix == 'set' && !empty($array[$key])) {
 $object->$method($array[$key]);
 }
 }
 return $object;
}

How it works…
To demonstrate how the array to hydrator object is used, first define the Application\
Generic\Hydrator\GetSet class as described in the How to do it… section. Next, define
an entity class that can be used to test the concept. For the purposes of this illustration,
create a Application\Entity\Person class, with the appropriate properties and
methods. Be sure to define getters and setters for all properties. Not all such methods are
shown here:

namespace Application\Entity;
class Person
{
 protected $firstName = '';
 protected $lastName = '';
 protected $address = '';
 protected $city = '';
 protected $stateProv = '';
 protected $postalCode = '';
 protected $country = '';

 public function getFirstName()
 {
 return $this->firstName;
 }

 public function setFirstName($firstName)
 {
 $this->firstName = $firstName;
 }

 // etc.
}

Implementing Software Design Patterns

394

You can now create a calling program called chap_11_array_to_object.php, which sets
up autoloading, and uses the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Entity\Person;
use Application\Generic\Hydrator\GetSet;

Next, you can define a test array with values that will be added to a new Person instance:

$a['firstName'] = 'Li\'l Abner';
$a['lastName'] = 'Yokum';
$a['address'] = '1 Dirt Street';
$a['city'] = 'Dogpatch';
$a['stateProv'] = 'Kentucky';
$a['postalCode']= '12345';
$a['country'] = 'USA';

You can now call hydrate() and extract() in a static manner:

$b = GetSet::hydrate($a, new Person());
var_dump($b);

The results are shown in the following screenshot:

Chapter 11

395

Building an object to array hydrator
This recipe is the converse of the Creating an array to object hydrator recipe. In this case, we
need to pull values from object properties and return an associative array where the key will
be the column name.

How to do it…
1.	 For this illustration we will build upon the Application\Generic\Hydrator\

GetSet class defined in the previous recipe:
namespace Application\Generic\Hydrator;
class GetSet
{
 // code
}

2.	 After the hydrate() method defined in the previous recipe, we define an
extract() method, which takes an object as an argument. The logic is similar to
that used with hydrate(), except this time we're searching for getXXX() methods.
Again, preg_match() is used to match the method prefix and its suffix, which is
subsequently assumed to be the array key:

public static function extract($object)
{
 $array = array();
 $class = get_class($object);
 $methodList = get_class_methods($class);
 foreach ($methodList as $method) {
 preg_match('/^(get)(.*?)$/i', $method, $matches);
 $prefix = $matches[1] ?? '';
 $key = $matches[2] ?? '';
 $key = strtolower(substr($key, 0, 1)) . substr($key, 1);
 if ($prefix == 'get') {
 $array[$key] = $object->$method();
 }
 }
 return $array;
}
}

Note that we have defined hydrate() and extract() as static methods
for convenience.

Implementing Software Design Patterns

396

How it works…
Define a calling program called chap_11_object_to_array.php, which sets up
autoloading, and uses the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Entity\Person;
use Application\Generic\Hydrator\GetSet;

Next, define an instance of Person, setting values for its properties:

$obj = new Person();
$obj->setFirstName('Li\'lAbner');
$obj->setLastName('Yokum');
$obj->setAddress('1DirtStreet');
$obj->setCity('Dogpatch');
$obj->setStateProv('Kentucky');
$obj->setPostalCode('12345');
$obj->setCountry('USA');

Finally, call the new extract() method in a static manner:

$a = GetSet::extract($obj);
var_dump($a);

The output is shown in the following screenshot:

Chapter 11

397

Implementing a strategy pattern
It is often the case that runtime conditions force the developer to define several ways of doing
the same thing. Traditionally, this involved a massive if/elseif/else block of commands.
You would then either have to define large blocks of logic inside the if statement, or create
a series of functions or methods to enable the different approaches. The strategy pattern
attempts to formalize this process by having the primary class encapsulate a series of sub-
classes that represent different approaches to solve the same problem.

How to do it…
1.	 In this illustration, we will use the GetSet hydrator class defined previously as

a strategy. We will define a primary Application\Generic\Hydrator\Any
class, which will then consume strategy classes in the Application\Generic\
Hydrator\Strategy namespace, including GetSet, PublicProps, and
Extending.

2.	 We first define class constants that reflect the built-in strategies that are available:
namespace Application\Generic\Hydrator;
use InvalidArgumentException;
use Application\Generic\Hydrator\Strategy\ {
GetSet, PublicProps, Extending };
class Any
{
 const STRATEGY_PUBLIC = 'PublicProps';
 const STRATEGY_GET_SET = 'GetSet';
 const STRATEGY_EXTEND = 'Extending';
 protected $strategies;
 public $chosen;

3.	 We then define a constructor that adds all built-in strategies to the $strategies
property:
public function __construct()
{
 $this->strategies[self::STRATEGY_GET_SET] = new GetSet();
 $this->strategies[self::STRATEGY_PUBLIC] = new PublicProps();
 $this->strategies[self::STRATEGY_EXTEND] = new Extending();
}

Implementing Software Design Patterns

398

4.	 We also add an addStrategy() method that allows us to overwrite or add new
strategies without having to recode the class:
public function addStrategy($key, HydratorInterface $strategy)
{
 $this->strategies[$key] = $strategy;
}

5.	 The hydrate() and extract() methods simply call those of the chosen strategy:
public function hydrate(array $array, $object)
{
 $strategy = $this->chooseStrategy($object);
 $this->chosen = get_class($strategy);
 return $strategy::hydrate($array, $object);
}

public function extract($object)
{
 $strategy = $this->chooseStrategy($object);
 $this->chosen = get_class($strategy);
 return $strategy::extract($object);
}

6.	 The tricky bit is figuring out which hydration strategy to choose. For this purpose we
define chooseStrategy(), which takes an object as an argument. We first perform
some detective work by way of getting a list of class methods. We then scan through
the list to see if we have any getXXX() or setXXX() methods. If so, we choose the
GetSet hydrator as our chosen strategy:
public function chooseStrategy($object)
{
 $strategy = NULL;
 $methodList = get_class_methods(get_class($object));
 if (!empty($methodList) && is_array($methodList)) {
 $getSet = FALSE;
 foreach ($methodList as $method) {
 if (preg_match('/^get|set.*$/i', $method)) {
 $strategy = $this->strategies[self::STRATEGY_GET_SET];
 break;
 }
 }
}

Chapter 11

399

7.	 Still within our chooseStrategy() method, if there are no getters or setters, we
next use get_class_vars() to determine if there are any available properties. If
so, we choose PublicProps as our hydrator:
if (!$strategy) {
 $vars = get_class_vars(get_class($object));
 if (!empty($vars) && count($vars)) {
 $strategy = $this->strategies[self::STRATEGY_PUBLIC];
 }
}

8.	 If all else fails, we fall back to the Extending hydrator, which returns a new class
that simply extends the object class, thus making any public or protected
properties available:
if (!$strategy) {
 $strategy = $this->strategies[self::STRATEGY_EXTEND];
}
return $strategy;
}
}

9.	 Now we turn our attention to the strategies themselves. First, we define a new
Application\Generic\Hydrator\Strategy namespace.

10.	 In the new namespace, we define an interface that allows us to identify any strategies
that can be consumed by Application\Generic\Hydrator\Any:
namespace Application\Generic\Hydrator\Strategy;
interface HydratorInterface
{
 public static function hydrate(array $array, $object);
 public static function extract($object);
}

11.	 The GetSet hydrator is exactly as defined in the previous two recipes, with the only
addition being that it will implement the new interface:
namespace Application\Generic\Hydrator\Strategy;
class GetSet implements HydratorInterface
{

 public static function hydrate(array $array, $object)
 {
 // defined in the recipe:
 // "Creating an Array to Object Hydrator"
 }

 public static function extract($object)

Implementing Software Design Patterns

400

 {
 // defined in the recipe:
 // "Building an Object to Array Hydrator"
 }
}

12.	 The next hydrator simply reads and writes public properties:
namespace Application\Generic\Hydrator\Strategy;
class PublicProps implements HydratorInterface
{
 public static function hydrate(array $array, $object)
 {
 $propertyList= array_keys(
 get_class_vars(get_class($object)));
 foreach ($propertyList as $property) {
 $object->$property = $array[$property] ?? NULL;
 }
 return $object;
 }

 public static function extract($object)
 {
 $array = array();
 $propertyList = array_keys(
 get_class_vars(get_class($object)));
 foreach ($propertyList as $property) {
 $array[$property] = $object->$property;
 }
 return $array;
 }
}

13.	 Finally, Extending, the Swiss Army knife of hydrators, extends the object class, thus
providing direct access to properties. We further define magic getters and setters to
provide access to properties.

14.	 The hydrate() method is the most difficult as we are assuming no getters or
setters are defined, nor are the properties defined with a visibility level of public.
Accordingly, we need to define a class that extends the class of the object to be
hydrated. We do this by first defining a string that will be used as a template to build
the new class:
namespace Application\Generic\Hydrator\Strategy;
class Extending implements HydratorInterface
{
 const UNDEFINED_PREFIX = 'undefined';

Chapter 11

401

 const TEMP_PREFIX = 'TEMP_';
 const ERROR_EVAL = 'ERROR: unable to evaluate object';
 public static function hydrate(array $array, $object)
 {
 $className = get_class($object);
 $components = explode('\\', $className);
 $realClass = array_pop($components);
 $nameSpace = implode('\\', $components);
 $tempClass = $realClass . self::TEMP_SUFFIX;
 $template = 'namespace '
 . $nameSpace . '{'
 . 'class ' . $tempClass
 . ' extends ' . $realClass . ' '

15.	 Continuing in the hydrate() method, we define a $values property, and a
constructor that assigns the array to be hydrated into the object as an argument.
We loop through the array of values, assigning values to properties. We also define a
useful getArrayCopy() method, which returns these values if needed, as well as a
magic __get() method to simulate direct property access:
. '{ '
. ' protected $values; '
. ' public function __construct($array) '
. ' { $this->values = $array; '
. ' foreach ($array as $key => $value) '
. ' $this->$key = $value; '
. ' } '
. ' public function getArrayCopy() '
. ' { return $this->values; } '

16.	 For convenience we define a magic __get() method, which simulates direct variable
access as if they were public:
. ' public function __get($key) '
. ' { return $this->values[$key] ?? NULL; } '

17.	 Still in the template for the new class, we define also a magic __call() method,
which simulates getters and setters:
. ' public function __call($method, $params) '
. ' { '
. ' preg_match("/^(get|set)(.*?)$/i", '
. ' $method, $matches); '
. ' $prefix = $matches[1] ?? ""; '
. ' $key = $matches[2] ?? ""; '
. ' $key = strtolower(substr($key, 0, 1)) '
. ' substr($key, 1); '

Implementing Software Design Patterns

402

. ' if ($prefix == "get") { '

. ' return $this->values[$key] ?? NULL; '

. ' } else { '

. ' $this->values[$key] = $params[0]; '

. ' } '

. ' } '

. '} '

. '} // ends namespace ' . PHP_EOL

18.	 Finally, still in the template for the new class, we add a function, in the global
namespace, that builds and returns the class instance:
. 'namespace { '
. 'function build($array) '
. '{ return new ' . $nameSpace . '\\'
. $tempClass . '($array); } '
. '} // ends global namespace '
. PHP_EOL;

19.	 Still in the hydrate() method, we execute the completed template using eval().
We then run the build() method defined just at the end of the template. Note that
as we are unsure of the namespace of the class to be populated, we define and call
build() from the global namespace:
try {
 eval($template);
} catch (ParseError $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(self::ERROR_EVAL);
}
return \build($array);
}

20.	 The extract() method is much easier to define as our choices are extremely
limited. Extending a class and populating it from an array using magic methods is
easily accomplished. The reverse is not the case. If we were to extend the class,
we would lose all the property values, as we are extending the class, not the object
instance. Accordingly, our only option is to use a combination of getters and public
properties:
public static function extract($object)
{
 $array = array();
 $class = get_class($object);
 $methodList = get_class_methods($class);
 foreach ($methodList as $method) {
 preg_match('/^(get)(.*?)$/i', $method, $matches);

Chapter 11

403

 $prefix = $matches[1] ?? '';
 $key = $matches[2] ?? '';
 $key = strtolower(substr($key, 0, 1))
 . substr($key, 1);
 if ($prefix == 'get') {
 $array[$key] = $object->$method();
 }
 }
 $propertyList= array_keys(get_class_vars($class));
 foreach ($propertyList as $property) {
 $array[$property] = $object->$property;
 }
 return $array;
 }
}

How it works…
You can begin by defining three test classes with identical properties: firstName, lastName,
and so on. The first, Person, should have protected properties along with getters and setters.
The second, PublicPerson, will have public properties. The third, ProtectedPerson, has
protected properties but no getters nor setters:

<?php
namespace Application\Entity;
class Person
{
 protected $firstName = '';
 protected $lastName = '';
 protected $address = '';
 protected $city = '';
 protected $stateProv = '';
 protected $postalCode = '';
 protected $country = '';

 public function getFirstName()
 {
 return $this->firstName;
 }

 public function setFirstName($firstName)
 {
 $this->firstName = $firstName;

Implementing Software Design Patterns

404

 }

 // be sure to define remaining getters and setters

}

<?php
namespace Application\Entity;
class PublicPerson
{
 private $id = NULL;
 public $firstName = '';
 public $lastName = '';
 public $address = '';
 public $city = '';
 public $stateProv = '';
 public $postalCode = '';
 public $country = '';
}

<?php
namespace Application\Entity;

class ProtectedPerson
{
 private $id = NULL;
 protected $firstName = '';
 protected $lastName = '';
 protected $address = '';
 protected $city = '';
 protected $stateProv = '';
 protected $postalCode = '';
 protected $country = '';
}

You can now define a calling program called chap_11_strategy_pattern.php, which sets
up autoloading and uses the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Entity\ { Person, PublicPerson, ProtectedPerson };
use Application\Generic\Hydrator\Any;
use Application\Generic\Hydrator\Strategy\ { GetSet, Extending,
 PublicProps };

Chapter 11

405

Next, create an instance of Person and run the setters to define values for properties:

$obj = new Person();
$obj->setFirstName('Li\'lAbner');
$obj->setLastName('Yokum');
$obj->setAddress('1 Dirt Street');
$obj->setCity('Dogpatch');
$obj->setStateProv('Kentucky');
$obj->setPostalCode('12345');
$obj->setCountry('USA');

Next, create an instance of the Any hydrator, call extract(), and use var_dump() to view
the results:

$hydrator = new Any();
$b = $hydrator->extract($obj);
echo "\nChosen Strategy: " . $hydrator->chosen . "\n";
var_dump($b);

Observe, in the following output, that the GetSet strategy was chosen:

Note that the id property is not set as its visibility level is private.

Next, you can define an array with the same values. Call hydrate() on the Any instance,
and supply a new PublicPerson instance as an argument:

$a = [
 'firstName' => 'Li\'lAbner',
 'lastName' => 'Yokum',

Implementing Software Design Patterns

406

 'address' => '1 Dirt Street',
 'city' => 'Dogpatch',
 'stateProv' => 'Kentucky',
 'postalCode' => '12345',
 'country' => 'USA'
];

$p = $hydrator->hydrate($a, new PublicPerson());
echo "\nChosen Strategy: " . $hydrator->chosen . "\n";
var_dump($p);

Here is the result. Note that the PublicProps strategy was chosen in this case:

Finally, call hydrate() again, but this time supply an instance of ProtectedPerson as the
object argument. We then call getFirstName() and getLastName() to test the magic
getters. We also access first and last names as direct variable access:

$q = $hydrator->hydrate($a, new ProtectedPerson());
echo "\nChosen Strategy: " . $hydrator->chosen . "\n";
echo "Name: {$q->getFirstName()} {$q->getLastName()}\n";
echo "Name: {$q->firstName} {$q->lastName}\n";
var_dump($q);

Here is the last output, showing that the Extending strategy was chosen. You'll also note
that the instance is a new ProtectedPerson_TEMP class, and that the protected properties
are fully populated:

Chapter 11

407

Defining a mapper
A mapper or data mapper works in much the same manner as a hydrator: converting data
from one model, be it array or object, into another. A critical difference is that the hydrator
is generic and does not need to have object property names pre-programmed, whereas the
mapper is the opposite: it needs precise information on property names for both models. In
this recipe we will demonstrate the use of a mapper to convert data from one database table
into another.

How to do it…
1.	 We first define a Application\Database\Mapper\FieldConfig class, which

contains mapping instructions for individual fields. We also define appropriate class
constants:
namespace Application\Database\Mapper;
use InvalidArgumentException;
class FieldConfig
{
 const ERROR_SOURCE =
 'ERROR: need to specify destTable and/or source';
 const ERROR_DEST = 'ERROR: need to specify either '
 . 'both destTable and destCol or neither';

Implementing Software Design Patterns

408

2.	 Key properties are defined along with the appropriate class constants. $key is used
to identify the object. $source represents the column from the source database
table. $destTable and $destCol represent the target database table and column.
$default, if defined, contains a default value or a callback that produces the
appropriate value:
public $key;
public $source;
public $destTable;
public $destCol;
public $default;

3.	 We now turn our attention to the constructor, which assigns default values, builds the
key, and checks to see that either or both $source or $destTable and $destCol
are defined:
public function __construct($source = NULL,
 $destTable = NULL,
 $destCol = NULL,
 $default = NULL)
{
 // generate key from source + destTable + destCol
 $this->key = $source . '.' . $destTable . '.' . $destCol;
 $this->source = $source;
 $this->destTable = $destTable;
 $this->destCol = $destCol;
 $this->default = $default;
 if (($destTable && !$destCol) ||
 (!$destTable && $destCol)) {
 throw new InvalidArgumentException(self::ERROR_DEST);
 }
 if (!$destTable && !$source) {
 throw new InvalidArgumentException(
 self::ERROR_SOURCE);
 }
}

Note that we allow source and destination columns to be NULL. The
reason for this is that we might have a source column that has no place in
the destination table. Likewise, there might be mandatory columns in the
destination table that are not represented in the source table.

Chapter 11

409

4.	 In the case of defaults, we need to check to see if the value is a callback. If so, we
run the callback; otherwise, we return the direct value. Note that the callbacks should
be defined so that they accept a database table row as an argument:
public function getDefault()
{
 if (is_callable($this->default)) {
 return call_user_func($this->default, $row);
 } else {
 return $this->default;
 }
}

5.	 Finally, to wrap up this class, we define getters and setters for each of the five
properties:
public function getKey()
{
 return $this->key;
}

public function setKey($key)
{
 $this->key = $key;
}

// etc.

6.	 Next, we define a Application\Database\Mapper\Mapping mapping class,
which accepts the name of the source and destination tables as well as an array
of FieldConfig objects as an argument. You will see later that we allow the
destination table property to be an array, as the mapping might be to two or more
destination tables:
namespace Application\Database\Mapper;
class Mapping
{
 protected $sourceTable;
 protected $destTable;
 protected $fields;
 protected $sourceCols;
 protected $destCols;

 public function __construct(
 $sourceTable, $destTable, $fields = NULL)
 {
 $this->sourceTable = $sourceTable;

Implementing Software Design Patterns

410

 $this->destTable = $destTable;
 $this->fields = $fields;
 }

7.	 We then define getters and setters for these properties:
public function getSourceTable()
{
 return $this->sourceTable;
}
public function setSourceTable($sourceTable)
{
 $this->sourceTable = $sourceTable;
}
// etc.

8.	 For field configuration, we also need to provide the ability to add an individual field.
There is no need to supply the key as a separate argument as this can be obtained
from the FieldConfig instance:
public function addField(FieldConfig $field)
{
 $this->fields[$field->getKey()] = $field;
 return $this;
}

9.	 It is extremely important to obtain an array of source column names. The problem
is that the source column name is a property buried in a FieldConfig object.
Accordingly, when this method is called, we loop through the array of FieldConfig
objects and invoke getSource() on each one to obtain the source column name:
public function getSourceColumns()
{
 if (!$this->sourceCols) {
 $this->sourceCols = array();
 foreach ($this->getFields() as $field) {
 if (!empty($field->getSource())) {
 $this->sourceCols[$field->getKey()] =
 $field->getSource();
 }
 }
 }
 return $this->sourceCols;
}

Chapter 11

411

10.	 We use a similar approach for getDestColumns(). The big difference compared
to getting a list of source columns is that we only want the columns for one specific
destination table, which is critical if there's more than one such table is defined. We
do not need to check to see if $destCol is set as this is already taken care of in the
constructor for FieldConfig:
public function getDestColumns($table)
{
 if (empty($this->destCols[$table])) {
 foreach ($this->getFields() as $field) {
 if ($field->getDestTable()) {
 if ($field->getDestTable() == $table) {
 $this->destCols[$table][$field->getKey()] =
 $field->getDestCol();
 }
 }
 }
 }
 return $this->destCols[$table];
}

11.	 Finally, we define a method that accepts as a first argument an array representing
one row of data from the source table. The second argument is the name of the
destination table. The method produces an array of data ready to be inserted into the
destination table.

12.	 We had to make a decision as to which would take precedence: the default value
(which could be provided by a callback), or data from the source table. We decided to
test for a default value first. If the default comes back NULL, data from the source is
used. Note that if further processing is required, the default should be defined as a
callback.
public function mapData($sourceData, $destTable)
{
 $dest = array();
 foreach ($this->fields as $field) {
 if ($field->getDestTable() == $destTable) {
 $dest[$field->getDestCol()] = NULL;
 $default = $field->getDefault($sourceData);
 if ($default) {
 $dest[$field->getDestCol()] = $default;
 } else {
 $dest[$field->getDestCol()] =
 $sourceData[$field->getSource()];
 }
 }
 }

Implementing Software Design Patterns

412

 return $dest;
}
}

Note that some columns will appear in the destination insert that are
not present in the source row. In this case, the $source property of the
FieldConfig object is left as NULL, and a default value is supplied,
either as a scalar value or as a callback.

13.	 We are now ready to define two methods that will generate SQL. The first such
method will generate an SQL statement to read from the source table. The statement
will include placeholders to be prepared (for example, using PDO::prepare()):
public function getSourceSelect($where = NULL)
{
 $sql = 'SELECT '
 . implode(',', $this->getSourceColumns()) . ' ';
 $sql .= 'FROM ' . $this->getSourceTable() . ' ';
 if ($where) {
 $where = trim($where);
 if (stripos($where, 'WHERE') !== FALSE) {
 $sql .= $where;
 } else {
 $sql .= 'WHERE ' . $where;
 }
 }
 return trim($sql);
}

14.	 The other SQL generation method produces a statement to be prepared for a specific
destination table. Notice that the placeholders are the same as the column names
preceded by ":":

public function getDestInsert($table)
{
 $sql = 'INSERT INTO ' . $table . ' ';
 $sql .= '('
 . implode(',', $this->getDestColumns($table))
 . ') ';
 $sql .= ' VALUES ';
 $sql .= '(:'
 . implode(',:', $this->getDestColumns($table))
 . ') ';
 return trim($sql);
}

Chapter 11

413

How it works…
Use the code shown in steps 1 to 5 to produce an Application\Database\Mapper\
FieldConfig class. Place the code shown in steps 6 to 14 into a second Application\
Database\Mapper\Mapping class.

Before defining a calling program that performs mapping, it's important to consider the
source and destination database tables. The definition for the source table, prospects_11,
is as follows:

CREATE TABLE `prospects_11` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `first_name` varchar(128) NOT NULL,
 `last_name` varchar(128) NOT NULL,
 `address` varchar(256) DEFAULT NULL,
 `city` varchar(64) DEFAULT NULL,
 `state_province` varchar(32) DEFAULT NULL,
 `postal_code` char(16) NOT NULL,
 `phone` varchar(16) NOT NULL,
 `country` char(2) NOT NULL,
 `email` varchar(250) NOT NULL,
 `status` char(8) DEFAULT NULL,
 `budget` decimal(10,2) DEFAULT NULL,
 `last_updated` datetime DEFAULT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `UNIQ_35730C06E7927C74` (`email`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

In this example, you can use two destination tables, customer_11 and profile_11,
between which there is a 1:1 relationship:

CREATE TABLE `customer_11` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(256) CHARACTER SET latin1
 COLLATE latin1_general_cs NOT NULL,
 `balance` decimal(10,2) NOT NULL,
 `email` varchar(250) NOT NULL,
 `password` char(16) NOT NULL,
 `status` int(10) unsigned NOT NULL DEFAULT '0',
 `security_question` varchar(250) DEFAULT NULL,
 `confirm_code` varchar(32) DEFAULT NULL,
 `profile_id` int(11) DEFAULT NULL,
 `level` char(3) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `UNIQ_81398E09E7927C74` (`email`)

Implementing Software Design Patterns

414

) ENGINE=InnoDB AUTO_INCREMENT=80 DEFAULT CHARSET=utf8
COMMENT='Customers';

CREATE TABLE `profile_11` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `address` varchar(256) NOT NULL,
 `city` varchar(64) NOT NULL,
 `state_province` varchar(32) NOT NULL,
 `postal_code` varchar(10) NOT NULL,
 `country` varchar(3) NOT NULL,
 `phone` varchar(16) NOT NULL,
 `photo` varchar(128) NOT NULL,
 `dob` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=80 DEFAULT CHARSET=utf8
COMMENT='Customers';

You can now define a calling program called chap_11_mapper.php, which sets up
autoloading and uses the two classes mentioned previously. You can also use the
Connection class defined in Chapter 5, Interacting with a Database:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
define('DEFAULT_PHOTO', 'person.gif');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Mapper\ { FieldConfig, Mapping };
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);

For demonstration purposes, after having made sure the two destination tables exist, you can
truncate both tables so that any data that appears is clean:

$conn->pdo->query('DELETE FROM customer_11');
$conn->pdo->query('DELETE FROM profile_11');

You are now ready to build the Mapping instance and populate it with FieldConfig objects.
Each FieldConfig object represents a mapping between source and destination. In the
constructor, supply the name of the source table and the two destination tables in the form of
an array:

$mapper = new Mapping('prospects_11', ['customer_11','profile_11']);

You can start simply by mapping fields between prospects_11 and customer_11 where
there are no defaults:

$mapper>addField(new FieldConfig('email','customer_11','email'))

Chapter 11

415

Note that addField() returns the current mapping instance so there is no need to keep
specifying $mapper->addField(). This technique is referred to as the fluent interface.

The name field is tricky, as in the prospects_11 table it's represented by two columns, but
only one column in the customer_11 table. Accordingly, you can add a callback as default
for first_name to combine the two fields into one. You will also need to define an entry for
last_name but where there is no destination mapping:

->addField(new FieldConfig('first_name','customer_11','name',
 function ($row) { return trim(($row['first_name'] ?? '')
. ' ' . ($row['last_name'] ?? ''));}))
->addField(new FieldConfig('last_name'))

The customer_11::status field can use the null coalesce operator (??) to determine if it's
set or not:

->addField(new FieldConfig('status','customer_11','status',
 function ($row) { return $row['status'] ?? 'Unknown'; }))

The customer_11::level field is not represented in the source table, thus you can make
a NULL entry for the source field, but make sure the destination table and column are set.
Likewise, customer_11::password is not present in the source table. In this case, the
callback uses the phone number as a temporary password:

->addField(new FieldConfig(NULL,'customer_11','level','BEG'))
->addField(new FieldConfig(NULL,'customer_11','password',
 function ($row) { return $row['phone']; }))

You can also set mappings from prospects_11 to profile_11 as follows. Note that as the
source photo and date of birth columns are not present in prospects_11, you can set any
appropriate default:

->addField(new FieldConfig('address','profile_11','address'))
->addField(new FieldConfig('city','profile_11','city'))
->addField(new FieldConfig('state_province','profile_11',
'state_province', function ($row) {
 return $row['state_province'] ?? 'Unknown'; }))
->addField(new FieldConfig('postal_code','profile_11',
'postal_code'))
->addField(new FieldConfig('phone','profile_11','phone'))
->addField(new FieldConfig('country','profile_11','country'))
->addField(new FieldConfig(NULL,'profile_11','photo',
DEFAULT_PHOTO))
->addField(new FieldConfig(NULL,'profile_11','dob',
date('Y-m-d')));

Implementing Software Design Patterns

416

In order to establish the 1:1 relationship between the profile_11 and customer_11
tables, we set the values of customer_11::id, customer_11::profile_id and
profile_11::id to the value of $row['id'] using a callback:

$idCallback = function ($row) { return $row['id']; };
$mapper->addField(new FieldConfig('id','customer_11','id',
$idCallback))
->addField(new FieldConfig(NULL,'customer_11','profile_id',
$idCallback))
->addField(new FieldConfig('id','profile_11','id',$idCallback));

You can now call the appropriate methods to generate three SQL statements, one to read
from the source table, and two to insert into the two destination tables:

$sourceSelect = $mapper->getSourceSelect();
$custInsert = $mapper->getDestInsert('customer_11');
$profileInsert = $mapper->getDestInsert('profile_11');

These three statements can immediately be prepared for later execution:

$sourceStmt = $conn->pdo->prepare($sourceSelect);
$custStmt = $conn->pdo->prepare($custInsert);
$profileStmt = $conn->pdo->prepare($profileInsert);

We then execute the SELECT statement, which produces rows from the source table. In a
loop we then generate INSERT data for each destination table, and execute the appropriate
prepared statements:

$sourceStmt->execute();
while ($row = $sourceStmt->fetch(PDO::FETCH_ASSOC)) {
 $custData = $mapper->mapData($row, 'customer_11');
 $custStmt->execute($custData);
 $profileData = $mapper->mapData($row, 'profile_11');
 $profileStmt->execute($profileData);
 echo "Processing: {$custData['name']}\n";
}

Here are the three SQL statements produced:

Chapter 11

417

We can then view the data directly from the database using SQL JOIN to ensure the
relationship has been maintained:

Implementing Software Design Patterns

418

Implementing object-relational mapping
There are two primary techniques to achieve a relational mapping between objects. The first
technique involves pre-loading the related child objects into the parent object. The advantage
to this approach is that it is easy to implement, and all parent-child information is immediately
available. The disadvantage is that large amounts of memory are potentially consumed, and
the performance curve is skewed.

The second technique is to embed a secondary lookup into the parent object. In this latter
approach, when you need to access the child objects, you would run a getter that would
perform the secondary lookup. The advantage of this approach is that performance demands
are spread out throughout the request cycle, and memory usage is (or can be) more easily
managed. The disadvantage of this approach is that there are more queries generated, which
means more work for the database server.

Please note, however, that we will show how the use of prepared
statements can be used to greatly offset this disadvantage.

How to do it…
Let's have a look at two techniques to implement object-relational mapping.

Technique #1 – pre-loading all child information
First, we will discuss how to implement object relational mapping by pre-loading all child
information into the parent class. For this illustration, we will use three related database
tables, customer, purchases, and products:

1.	 We will use the existing Application\Entity\Customer class (defined in
Chapter 5, Interacting with a Database, in the Defining entity classes to match
database tables recipe) as a model to develop an Application\Entity\
Purchase class. As before, we will use the database definition as the basis of the
entity class definition. Here is the database definition for the purchases table:
CREATE TABLE `purchases` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `transaction` varchar(8) NOT NULL,
 `date` datetime NOT NULL,
 `quantity` int(10) unsigned NOT NULL,
 `sale_price` decimal(8,2) NOT NULL,
 `customer_id` int(11) DEFAULT NULL,
 `product_id` int(11) DEFAULT NULL,
 PRIMARY KEY (`id`),
 KEY `IDX_C3F3` (`customer_id`),

Chapter 11

419

 KEY `IDX_665A` (`product_id`),
 CONSTRAINT `FK_665A` FOREIGN KEY (`product_id`) REFERENCES
 `products` (`id`),
 CONSTRAINT `FK_C3F3` FOREIGN KEY (`customer_id`) REFERENCES
 `customer` (`id`)
);

2.	 Based on the customer entity class, here is how Application\Entity\Purchase
might look. Note that not all getters and setters are shown:
namespace Application\Entity;

class Purchase extends Base
{

 const TABLE_NAME = 'purchases';
 protected $transaction = '';
 protected $date = NULL;
 protected $quantity = 0;
 protected $salePrice = 0.0;
 protected $customerId = 0;
 protected $productId = 0;

 protected $mapping = [
 'id' => 'id',
 'transaction' => 'transaction',
 'date' => 'date',
 'quantity' => 'quantity',
 'sale_price' => 'salePrice',
 'customer_id' => 'customerId',
 'product_id' => 'productId',
];

 public function getTransaction() : string
 {
 return $this->transaction;
 }
 public function setTransaction($transaction)
 {
 $this->transaction = $transaction;
 }
 // NOTE: other getters / setters are not shown here
}

Implementing Software Design Patterns

420

3.	 We are now ready to define Application\Entity\Product. Here is the database
definition for the products table:
CREATE TABLE `products` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `sku` varchar(16) DEFAULT NULL,
 `title` varchar(255) NOT NULL,
 `description` varchar(4096) DEFAULT NULL,
 `price` decimal(10,2) NOT NULL,
 `special` int(11) NOT NULL,
 `link` varchar(128) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `UNIQ_38C4` (`sku`)
);

4.	 Based on the customer entity class, here is how Application\Entity\Product
might look:
namespace Application\Entity;

class Product extends Base
{

 const TABLE_NAME = 'products';
 protected $sku = '';
 protected $title = '';
 protected $description = '';
 protected $price = 0.0;
 protected $special = 0;
 protected $link = '';

 protected $mapping = [
 'id' => 'id',
 'sku' => 'sku',
 'title' => 'title',
 'description' => 'description',
 'price' => 'price',
 'special' => 'special',
 'link' => 'link',
];

 public function getSku() : string
 {
 return $this->sku;
 }
 public function setSku($sku)

Chapter 11

421

 {
 $this->sku = $sku;
 }
 // NOTE: other getters / setters are not shown here
}

5.	 Next, we need to implement a way to embed related objects. We will start with the
Application\Entity\Customer parent class. For this section, we will assume
the following relationships, illustrated in the following diagram:

�� One customer, many purchases

�� One purchase, one product

6.	 Accordingly, we define a getter and setter that process purchases in the form of an
array of objects:
protected $purchases = array();
public function addPurchase($purchase)
{
 $this->purchases[] = $purchase;
}
public function getPurchases()
{
 return $this->purchases;
}

7.	 Now we turn our attention to Application\Entity\Purchase. In this case,
there is a 1:1 relationship between a purchase and a product, so there's no need to
process an array:
protected $product = NULL;
public function getProduct()
{
 return $this->product;
}
public function setProduct(Product $product)
{
 $this->product = $product;
}

Implementing Software Design Patterns

422

Notice that in both entity classes, we do not alter the $mapping array.
This is because implementing object relational mapping has no bearing
on the mapping between entity property names and database column
names.

8.	 Since the core functionality of obtaining basic customer information is still needed,
all we need to do is to extend the Application\Database\CustomerService
class described in Chapter 5, Interacting with a Database, in the Tying entity classes
to RDBMS queries recipe. We can create a new Application\Database\
CustomerOrmService_1 class, which extends Application\Database\
CustomerService:
namespace Application\Database;
use PDO;
use PDOException;
use Application\Entity\Customer;
use Application\Entity\Product;
use Application\Entity\Purchase;
class CustomerOrmService_1 extends CustomerService
{
 // add methods here
}

9.	 We then add a method to the new service class that performs a lookup and embeds
the results, in the form of Product and Purchase entities, into the core customer
entity. This method performs a lookup in the form of a JOIN. This is possible because
there is a 1:1 relationship between purchase and product. Because the id column
has the same name in both tables, we need to add the purchase ID column as an
alias. We then loop through the results, creating Product and Purchase entities.
After overriding the ID, we can then embed the Product entity into the Purchase
entity, and then add the Purchase entity to the array in the Customer entity:
protected function fetchPurchasesForCustomer(Customer $cust)
{
 $sql = 'SELECT u.*,r.*,u.id AS purch_id '
 . 'FROM purchases AS u '
 . 'JOIN products AS r '
 . 'ON r.id = u.product_id '
 . 'WHERE u.customer_id = :id '
 . 'ORDER BY u.date';
 $stmt = $this->connection->pdo->prepare($sql);
 $stmt->execute(['id' => $cust->getId()]);
 while ($result = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $product = Product::arrayToEntity($result, new Product());
 $product->setId($result['product_id']);

Chapter 11

423

 $purch = Purchase::arrayToEntity($result, new Purchase());
 $purch->setId($result['purch_id']);
 $purch->setProduct($product);
 $cust->addPurchase($purch);
 }
 return $cust;
}

10.	 Next, we provide a wrapper for the original fetchById() method. This block
of code needs to not only get the original Customer entity, but needs to look
up and embed Product and Purchase entities. We can call the new
fetchByIdAndEmbedPurchases() method and accept a customer ID as an
argument:

public function fetchByIdAndEmbedPurchases($id)
{
 return $this->fetchPurchasesForCustomer(
 $this->fetchById($id));
}

Technique #2 – embedding secondary lookups
Now we will cover embedding secondary lookups into the related entity classes. We will
continue to use the same illustration as above, using the entity classes defined that
correspond to three related database tables, customer, purchases, and products:

1.	 The mechanics of this approach are quite similar to those described in the preceding
section. The main difference is that instead of doing the database lookup, and
producing entity classes right away, we will embed a series of anonymous functions
that will do the same thing, but called from the view logic.

2.	 We need to add a new method to the Application\Entity\Customer class that
adds a single entry to the purchases property. Instead of an array of Purchase
entities, we will be supplying an anonymous function:
public function setPurchases(Closure $purchaseLookup)
{
 $this->purchases = $purchaseLookup;
}

3.	 Next, we will make a copy of the Application\Database\
CustomerOrmService_1 class, and call it Application\Database\
CustomerOrmService_2:
namespace Application\Database;
use PDO;
use PDOException;

Implementing Software Design Patterns

424

use Application\Entity\Customer;
use Application\Entity\Product;
use Application\Entity\Purchase;
class CustomerOrmService_2 extends CustomerService
{
 // code
}

4.	 We then define a fetchPurchaseById() method, which looks up a single
purchase based on its ID and produces a Purchase entity. Because we will
ultimately be making a series of repetitive requests for single purchases in this
approach, we can regain database efficiency by working off the same prepared
statement, in this case, a property called $purchPreparedStmt:
public function fetchPurchaseById($purchId)
{
 if (!$this->purchPreparedStmt) {
 $sql = 'SELECT * FROM purchases WHERE id = :id';
 $this->purchPreparedStmt =
 $this->connection->pdo->prepare($sql);
 }
 $this->purchPreparedStmt->execute(['id' => $purchId]);
 $result = $this->purchPreparedStmt->fetch(PDO::FETCH_ASSOC);
 return Purchase::arrayToEntity($result, new Purchase());
}

5.	 After that, we need a fetchProductById() method that looks up a single product
based on its ID and produces a Product entity. Given that a customer may have
purchased the same product several times, we can introduce an additional level of
efficiency by storing acquired product entities in a $products array. In addition, as
with purchases, we can perform lookups on the same prepared statement:
public function fetchProductById($prodId)
{
 if (!isset($this->products[$prodId])) {
 if (!$this->prodPreparedStmt) {
 $sql = 'SELECT * FROM products WHERE id = :id';
 $this->prodPreparedStmt =
 $this->connection->pdo->prepare($sql);
 }
 $this->prodPreparedStmt->execute(['id' => $prodId]);
 $result = $this->prodPreparedStmt
 ->fetch(PDO::FETCH_ASSOC);
 $this->products[$prodId] =
 Product::arrayToEntity($result, new Product());
 }
 return $this->products[$prodId];
}

Chapter 11

425

6.	 We can now rework the fetchPurchasesForCustomer() method to have it
embed an anonymous function that makes calls to both fetchPurchaseById()
and fetchProductById(), and then assigns the resulting product entity to the
newly found purchase entity. In this example, we do an initial lookup that just returns
the IDs of all purchases for this customer. We then embed a sequence of anonymous
functions in the Customer::$purchases property, storing the purchase ID as the
array key, and the anonymous function as its value:

public function fetchPurchasesForCustomer(Customer $cust)
{
 $sql = 'SELECT id '
 . 'FROM purchases AS u '
 . 'WHERE u.customer_id = :id '
 . 'ORDER BY u.date';
 $stmt = $this->connection->pdo->prepare($sql);
 $stmt->execute(['id' => $cust->getId()]);
 while ($result = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $cust->addPurchaseLookup(
 $result['id'],
 function ($purchId, $service) {
 $purchase = $service->fetchPurchaseById($purchId);
 $product = $service->fetchProductById(
 $purchase->getProductId());
 $purchase->setProduct($product);
 return $purchase; }
);
 }
 return $cust;
}

How it works…
Define the following classes based on the steps from this recipe as follows:

Class Technique #1 steps
Application\Entity\Purchase 1 - 2, 7
Application\Entity\Product 3 – 4
Application\Entity\Customer 6, 16, + described in Chapter 5,

Interacting with a Database.
Application\Database\
CustomerOrmService_1

8 – 10

Implementing Software Design Patterns

426

The second approach to this would be as follows:

Class Technique #2 steps
Application\Entity\Customer 2
Application\Database\
CustomerOrmService_2

3 – 6

In order to implement approach #1, where entities are embedded, define a calling program
called chap_11_orm_embedded.php, which sets up autoloading and uses the appropriate
classes:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
use Application\Database\CustomerOrmService_1;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService_1(
 new Connection(include __DIR__ . DB_CONFIG_FILE));
$id = rand(1,79);
$cust = $service->fetchByIdAndEmbedPurchases($id);

In the view logic, you will have acquired a fully populated Customer entity by way of the
fetchByIdAndEmbedPurchases() method. Now all you need to do is to call the right
getters to display information:

 <!-- Customer Info -->
 <h1><?= $cust->getname() ?></h1>
 <div class="row">
 <div class="left">Balance</div><div class="right">
 <?= $cust->getBalance(); ?></div>
 </div>
 <!-- etc. -->

The logic needed to display purchase information would then look something like the
following HTML. Notice that Customer::getPurchases() returns an array of Purchase
entities. To get product information from the Purchase entity, inside the loop, call
Purchase::getProduct(), which produces a Product entity. You can then call any of the
Product getters, in this example, Product::getTitle():

 <!-- Purchases Info -->
 <table>
 <?php foreach ($cust->getPurchases() as $purchase) : ?>

Chapter 11

427

 <tr>
 <td><?= $purchase->getTransaction() ?></td>
 <td><?= $purchase->getDate() ?></td>
 <td><?= $purchase->getQuantity() ?></td>
 <td><?= $purchase->getSalePrice() ?></td>
 <td><?= $purchase->getProduct()->getTitle() ?></td>
 </tr>
 <?php endforeach; ?>
</table>

Turning your attention to the second approach, which uses secondary lookups, define a calling
program called chap_11_orm_secondary_lookups.php, which sets up autoloading and
uses the appropriate classes:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
use Application\Database\CustomerOrmService_2;

Next, create an instance of the service, and look up a customer using a random ID:

$service = new CustomerOrmService_2(new Connection(include __DIR__ .
DB_CONFIG_FILE));
$id = rand(1,79);

You can now retrieve an Application\Entity\Customer instance and call
fetchPurchasesForCustomer() for this customer, which embeds the sequence of
anonymous functions:

$cust = $service->fetchById($id);
$cust = $service->fetchPurchasesForCustomer($cust);

The view logic for displaying core customer information remains the same as described
previously. The logic needed to display purchase information would then look something like the
following HTML code snippet. Notice that Customer::getPurchases() returns an array of
anonymous functions. Each function call returns one specific purchase and related products:

<table>
 <?php foreach($cust->getPurchases() as $purchId => $function) : ?>
 <tr>
 <?php $purchase = $function($purchId, $service); ?>
 <td><?= $purchase->getTransaction() ?></td>
 <td><?= $purchase->getDate() ?></td>
 <td><?= $purchase->getQuantity() ?></td>
 <td><?= $purchase->getSalePrice() ?></td>

Implementing Software Design Patterns

428

 <td><?= $purchase->getProduct()->getTitle() ?></td>
 </tr>
 <?php endforeach; ?>
</table>

Here is an example of the output:

Best practice
Although each iteration of the loop represents two independent database
queries (one for purchase, one for product), efficiency is retained by the
use of prepared statements. Two statements are prepared in advance: one
that looks up a specific purchase, and one that looks up a specific product.
These prepared statements are then executed multiple times. Also, each
product retrieval is independently stored in an array, resulting in even
greater efficiency.

See also
Probably the best example of a library that implements object-relational mapping is Doctrine.
Doctrine uses an embedded approach that its documentation refers to as a proxy. For more
information, please refer to http://www.doctrine-project.org/projects/orm.
html.

http://www.doctrine-project.org/projects/orm.html
http://www.doctrine-project.org/projects/orm.html

Chapter 11

429

You might also consider reviewing a training video on Learning Doctrine, available from
O'Reilly Media at http://shop.oreilly.com/product/0636920041382.do.
(Disclaimer: this is a shameless plug by the author of both this book and this video!)

Implementing the Pub/Sub design pattern
The Publish/Subscribe (Pub/Sub) design pattern often forms the basis of software event-
driven programming. This methodology allows asynchronous communications between different
software applications, or different software modules within a single application. The purpose of
the pattern is to allow a method or function to publish a signal when an action of significance
has taken place. One or more classes would then subscribe and take action if a certain signal
has been published.

Example of such actions are when the database is modified, or when a user has logged in.
Another common use for this design pattern is when an application delivers news feeds. If
an urgent news item has been posted, the application would publish this fact, allowing client
subscribers to refresh their news listings.

How to do it…
1.	 First, we define our publisher class, Application\PubSub\Publisher. You'll

notice that we are making use of two useful Standard PHP Library (SPL) interfaces,
SplSubject and SplObserver:
namespace Application\PubSub;
use SplSubject;
use SplObserver;
class Publisher implements SplSubject
{
 // code
}

2.	 Next, we add properties to represent the publisher name, data to be passed to
subscribers, and an array of subscribers (also referred to as listeners). You will also
note that we will use a linked list (described in Chapter 10, Looking at Advanced
Algorithms) to allow for priority:
protected $name;
protected $data;
protected $linked;
protected $subscribers;

http://shop.oreilly.com/product/0636920041382.do

Implementing Software Design Patterns

430

3.	 The constructor initializes these properties. We also throw in __toString() in case
we need quick access to the name of this publisher:
public function __construct($name)
{
 $this->name = $name;
 $this->data = array();
 $this->subscribers = array();
 $this->linked = array();
}

public function __toString()
{
 return $this->name;
}

4.	 In order to associate a subscriber with this publisher, we define attach(), which
is specified in the SplSubject interface. We accept an SplObserver instance
as an argument. Note that we need to add entries to both the $subscribers and
$linked properties. $linked is then sorted by value, represented by the priority,
using arsort(), which sorts in reverse and maintains the key:
public function attach(SplObserver $subscriber)
{
 $this->subscribers[$subscriber->getKey()] = $subscriber;
 $this->linked[$subscriber->getKey()] =
 $subscriber->getPriority();
 arsort($this->linked);
}

5.	 The interface also requires us to define detach(), which removes the subscriber
from the list:
public function detach(SplObserver $subscriber)
{
 unset($this->subscribers[$subscriber->getKey()]);
 unset($this->linked[$subscriber->getKey()]);
}

6.	 Also required by the interface, we define notify(), which calls update() on all the
subscribers. Note that we loop through the linked list to ensure the subscribers are
called in order of priority:
public function notify()
{
 foreach ($this->linked as $key => $value)
 {
 $this->subscribers[$key]->update($this);
 }
}

Chapter 11

431

7.	 Next, we define the appropriate getters and setters. We don't show them all here to
conserve space:
public function getName()
{
 return $this->name;
}

public function setName($name)
{
 $this->name = $name;
}

8.	 Finally, we need to provide a means of setting data items by key, which will then be
available to subscribers when notify() is invoked:
public function setDataByKey($key, $value)
{
 $this->data[$key] = $value;
}

9.	 Now we can have a look at Application\PubSub\Subscriber. Typically, we
would define multiple subscribers for each publisher. In this case, we implement the
SplObserver interface:
namespace Application\PubSub;
use SplSubject;
use SplObserver;
class Subscriber implements SplObserver
{
 // code
}

10.	 Each subscriber needs a unique identifier. In this case, we create the key using
md5() and date/time information, combined with a random number. The constructor
initializes the properties as follows. The actual logical functionality performed by the
subscriber is in the form of a callback:
protected $key;
protected $name;
protected $priority;
protected $callback;
public function __construct(
 string $name, callable $callback, $priority = 0)
{
 $this->key = md5(date('YmdHis') . rand(0,9999));
 $this->name = $name;
 $this->callback = $callback;
 $this->priority = $priority;
}

Implementing Software Design Patterns

432

11.	 The update() function is called when notifiy() on the publisher is invoked.
We pass a publisher instance as an argument, and call the callback defined for this
subscriber:
public function update(SplSubject $publisher)
{
 call_user_func($this->callback, $publisher);
}

12.	 We also need to define getters and setters for convenience. Not all are shown here:

public function getKey()
{
 return $this->key;
}

public function setKey($key)
{
 $this->key = $key;
}

// other getters and setters not shown

How it works…
For the purposes of this illustration, define a calling program called chap_11_pub_sub_
simple_example.php, which sets up autoloading and uses the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\PubSub\ { Publisher, Subscriber };

Next, create a publisher instance and assign data:

$pub = new Publisher('test');
$pub->setDataByKey('1', 'AAA');
$pub->setDataByKey('2', 'BBB');
$pub->setDataByKey('3', 'CCC');
$pub->setDataByKey('4', 'DDD');

Now you can create test subscribers that read data from the publisher and echo the results.
The first parameter is the name, the second the callback, and the last is the priority:

$sub1 = new Subscriber(
 '1',
 function ($pub) {

Chapter 11

433

 echo '1:' . $pub->getData()[1] . PHP_EOL;
 },
 10
);
$sub2 = new Subscriber(
 '2',
 function ($pub) {
 echo '2:' . $pub->getData()[2] . PHP_EOL;
 },
 20
);
$sub3 = new Subscriber(
 '3',
 function ($pub) {
 echo '3:' . $pub->getData()[3] . PHP_EOL;
 },
 99
);

For test purposes, attach the subscribers out of order, and call notify() twice:

$pub->attach($sub2);
$pub->attach($sub1);
$pub->attach($sub3);
$pub->notify();
$pub->notify();

Next, define and attach another subscriber that looks at the data for subscriber 1 and exits if
it's not empty:

$sub4 = new Subscriber(
 '4',
 function ($pub) {
 echo '4:' . $pub->getData()[4] . PHP_EOL;
 if (!empty($pub->getData()[1]))
 die('1 is set ... halting execution');
 },
 25
);
$pub->attach($sub4);
$pub->notify();

Implementing Software Design Patterns

434

Here is the output. Note that the output is in order of priority (where higher priority goes first),
and that the second block of output is interrupted:

There's more…
A closely related software design pattern is Observer. The mechanism is similar but the
generally agreed difference is that Observer operates in a synchronous manner, where all
observer methods are called when a signal (often also referred to as message or event)
is received. The Pub/Sub pattern, in contrast, operates asynchronously, typically using a
message queue. Another difference is that in the Pub/Sub pattern, publishers do not need to
be aware of subscribers.

See also
For a good discussion on the difference between the Observer and Pub/Sub patterns, refer
to the article at http://stackoverflow.com/questions/15594905/difference-
between-observer-pub-sub-and-data-binding.

http://stackoverflow.com/questions/15594905/difference-between-observer-pub-sub-and-data-binding
http://stackoverflow.com/questions/15594905/difference-between-observer-pub-sub-and-data-binding

435

12
Improving Web Security

In this chapter, we will cover the following topics:

ff Filtering $_POST data

ff Validating $_POST data

ff Safeguarding the PHP session

ff Securing forms with a token

ff Building a secure password generator

ff Safeguarding forms with a CAPTCHA

ff Encrypting/decrypting without mcrypt

Introduction
In this chapter, we will show you how to set up a simple yet effective mechanism for filtering
and validating a block of post data. Then, we will cover how to protect your PHP sessions from
potential session hijacking and other forms of attack. The next recipe shows how to protect
forms from Cross Site Request Forgery (CSRF) attacks using a randomly generated token.
The recipe on password generation shows you how to incorporate PHP 7 true randomization to
generate secure passwords. We then show you two forms of CAPTCHA: one that is text based,
the other using a distorted image. Finally, there is a recipe that covers strong encryption
without using the discredited and soon-to-be-deprecated mcrypt extension.

Improving Web Security

436

Filtering $_POST data
The process of filtering data can encompass any or all of the following:

ff Removing unwanted characters (that is, removing <script> tags)

ff Performing transformations on the data (that is, converting a quote to ")

ff Encrypting or decrypting the data

Encryption is covered in the last recipe of this chapter. Otherwise, we will present a basic
mechanism that can be used to filter $_POST data arriving following form submission.

How to do it…
1.	 First of all, you need to have an awareness of the data that will be present in $_POST.

Also, perhaps more importantly, you will need to be aware of the restrictions imposed
by the database table in which the form data will presumably be stored. As an
example, have a look at the database structure for the prospects table:
COLUMN TYPE NULL DEFAULT
first_name varchar(128) No None NULL
last_name varchar(128) No None NULL
address varchar(256) Yes None NULL
city varchar(64) Yes None NULL
state_province varchar(32) Yes None NULL
postal_code char(16) No None NULL
phone varchar(16) No None NULL
country char(2) No None NULL
email varchar(250) No None NULL
status char(8) Yes None NULL
budget decimal(10,2) Yes None NULL
last_updated datetime Yes None NULL

2.	 Once you have completed an analysis of the data to be posted and stored, you can
determine what type of filtering is to occur, and which PHP functions will serve this
purpose.

3.	 As an example, if you need to get rid of leading and trailing white space, which is
completely possible from user supplied form data, you can use the PHP trim()
function. All of the character data has length limits according to the database
structure. Accordingly, you might consider using substr() to ensure the length
is not exceeded. If you wanted to remove non-alphabetical characters, you might
consider using preg_replace() with the appropriate pattern.

Chapter 12

437

4.	 We can now group the set of desired PHP functions into a single array of callbacks.
Here is an example based on the filtering needs for the form data that will eventually
be stored in the prospects table:
$filter = [
 'trim' => function ($item) { return trim($item); },
 'float' => function ($item) { return (float) $item; },
 'upper' => function ($item) { return strtoupper($item); },
 'email' => function ($item) {
 return filter_var($item, FILTER_SANITIZE_EMAIL); },
 'alpha' => function ($item) {
 return preg_replace('/[^A-Za-z]/', '', $item); },
 'alnum' => function ($item) {
 return preg_replace('/[^0-9A-Za-z]/', '', $item); },
 'length' => function ($item, $length) {
 return substr($item, 0, $length); },
 'stripTags' => function ($item) { return strip_tags($item); },
];

5.	 Next, we define an array that matches the field names expected in $_POST. In this
array, we specify the key in the $filter array, along with any parameters. Note the
first key, *. We will use that as a wildcard to be applied to all fields:
$assignments = [
 '*' => ['trim' => NULL, 'stripTags' => NULL],
 'first_name' => ['length' => 32, 'alnum' => NULL],
 'last_name' => ['length' => 32, 'alnum' => NULL],
 'address' => ['length' => 64, 'alnum' => NULL],
 'city' => ['length' => 32],
 'state_province'=> ['length' => 20],
 'postal_code' => ['length' => 12, 'alnum' => NULL],
 'phone' => ['length' => 12],
 'country' => ['length' => 2, 'alpha' => NULL,
 'upper' => NULL],
 'email' => ['length' => 128, 'email' => NULL],
 'budget' => ['float' => NULL],
];

6.	 We then loop through the data set (that is, coming from $_POST) and apply the
callbacks in turn. We first run all callbacks assigned to the wildcard (*) key.

It is important to implement a wildcard filter to avoid redundant settings.
In the preceding example, we wish to apply filters that represent the
PHP functions strip_tags() and trim() for every item.

Improving Web Security

438

7.	 Next, we run through all callbacks assigned to a particular data field. When we're
done, all values in $data will be filtered:

foreach ($data as $field => $item) {
 foreach ($assignments['*'] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
 foreach ($assignments[$field] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
}

How it works…
Place the code shown in steps 4 through 6 into a file called chap_12_post_data_
filtering_basic.php. You will also need to define an array to simulate data that would
be present in $_POST. In this case, you could define two arrays, one with good data, and one
with bad data:

$testData = [
 'goodData' => [
 'first_name' => 'Doug',
 'last_name' => 'Bierer',
 'address' => '123 Main Street',
 'city' => 'San Francisco',
 'state_province'=> 'California',
 'postal_code' => '94101',
 'phone' => '+1 415-555-1212',
 'country' => 'US',
 'email' => 'doug@unlikelysource.com',
 'budget' => '123.45',
],
 'badData' => [
 'first_name' => 'This+Name<script>bad tag</script>Valid!',
 'last_name' 	=>
 'ThisLastNameIsWayTooLongAbcdefghijklmnopqrstuvwxyz0123456789
 Abcdefghijklmnopqrstuvwxyz0123456789Abcdefghijklmnopqrstuvwxyz
 0123456789Abcdefghijklmnopqrstuvwxyz0123456789',
 //'address' 	=> '', // missing
 'city' => 'ThisCityNameIsTooLong01234567890123456
 7890123456789012345678901234567890123456789 ',
 //'state_province'=> '', // missing
 'postal_code' => '!"£$%^Non Alpha Chars',
 'phone' => ' 12345 ',
 'country' => '12345',

Chapter 12

439

 'email' => 'this.is@not@an.email',
 'budget' => 'XXX',
]
];

Finally, you will need to loop through the filter assignments, presenting the good and bad data:

foreach ($testData as $data) {
 foreach ($data as $field => $item) {
 foreach ($assignments['*'] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
 foreach ($assignments[$field] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
 printf("%16s : %s\n", $field, $item);
 }
}

Here's how the output might appear for this example:

Note that the names were truncated and tags were removed. You will also note that although
the e-mail address was filtered, it is still not a valid address. It's important to note that for
proper treatment of data, it might be necessary to validate as well as to filter.

Improving Web Security

440

See also
In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST filters,
discusses how to incorporate the basic filtering concepts covered here into a comprehensive
filter chaining mechanism.

Validating $_POST data
The primary difference between filtering and validation is that the latter does not alter the
original data. Another difference is in intent. The purpose of validation is to confirm that the
data matches certain criteria established according to the needs of your customer.

How to do it…
1.	 The basic validation mechanism we will present here is identical to that shown in

the preceding recipe. As with filtering, it is vital to have an idea of the nature of the
data to be validated, how it fits your customer's requirements, and also whether it
matches the criteria enforced by the database. For example, if in the database, the
maximum width of the column is 128, the validation callback could use strlen() to
confirm that the length of the data submitted is less than or equal to 128 characters.
Likewise, you could use ctype_alnum() to confirm that the data only contains
letters and numbers, as appropriate.

2.	 Another consideration for validation is to present an appropriate validation failure
message. The validation process, in a certain sense, is also a confirmation process,
where somebody presumably will review the validation to confirm success or failure. If
the validation fails, that person will need to know the reason why.

3.	 For this illustration, we will again focus on the prospects table. We can now group
the set of desired PHP functions into a single array of callbacks. Here is an example
based on the validation needs for the form data, which will eventually be stored in the
prospects table:
$validator = [
 'email' => [
 'callback' => function ($item) {
 return filter_var($item, FILTER_VALIDATE_EMAIL); },
 'message' => 'Invalid email address'],
 'alpha' => [
 'callback' => function ($item) {
 return ctype_alpha(str_replace(' ', '', $item)); },
 'message' => 'Data contains non-alpha characters'],
 'alnum' => [
 'callback' => function ($item) {
 return ctype_alnum(str_replace(' ', '', $item)); },

Chapter 12

441

 'message' => 'Data contains characters which are '
 . 'not letters or numbers'],
 'digits' => [
 'callback' => function ($item) {
 return preg_match('/[^0-9.]/', $item); },
 'message' => 'Data contains characters which '
 . 'are not numbers'],
 'length' => [
 'callback' => function ($item, $length) {
 return strlen($item) <= $length; },
 'message' => 'Item has too many characters'],
 'upper' => [
 'callback' => function ($item) {
 return $item == strtoupper($item); },
 'message' => 'Item is not upper case'],
 'phone' => [
 'callback' => function ($item) {
 return preg_match('/[^0-9() -+]/', $item); },
 'message' => 'Item is not a valid phone number'],
];

Notice, for the alpha and alnum callbacks, we allow for whitespace by
first removing it using str_replace(). We can then call ctype_
alpha() or ctype_alnum(), which will determine whether any
disallowed characters are present.

4.	 Next, we define an array of assignments that matches the field names expected in
$_POST. In this array, we specify the key in the $validator array, along with any
parameters:
$assignments = [
 'first_name' => ['length' => 32, 'alpha' => NULL],
 'last_name' => ['length' => 32, 'alpha' => NULL],
 'address' => ['length' => 64, 'alnum' => NULL],
 'city' => ['length' => 32, 'alnum' => NULL],
 'state_province'=> ['length' => 20, 'alpha' => NULL],
 'postal_code' => ['length' => 12, 'alnum' => NULL],
 'phone' => ['length' => 12, 'phone' => NULL],
 'country' => ['length' => 2, 'alpha' => NULL,
 'upper' => NULL],
 'email' => ['length' => 128, 'email' => NULL],
 'budget' => ['digits' => NULL],
];

Improving Web Security

442

5.	 We then use nested foreach() loops to iterate through the block of data one field
at a time. For each field, we loop through the callbacks assigned to that field:

foreach ($data as $field => $item) {
 echo 'Processing: ' . $field . PHP_EOL;
 foreach ($assignments[$field] as $key => $option) {
 if ($validator[$key]['callback']($item, $option)) {
 $message = 'OK';
 } else {
 $message = $validator[$key]['message'];
 }
 printf('%8s : %s' . PHP_EOL, $key, $message);
 }
}

Instead of echoing the output directly, as shown, you might log the validation
success/failure to be presented to the reviewer at a later time. Also, as
shown in Chapter 6, Building Scalable Websites, you can work the validation
mechanism into the form, displaying validation messages next to their
matching form elements.

How it works…
Place the code shown in steps 3 through 5 into a file called chap_12_post_data_
validation_basic.php. You will also need to define an array of data that simulates data
that would be present in $_POST. In this case, you use the two arrays mentioned in the
preceding recipe, one with good data, and one with bad data. The final output should look
something like this:

Chapter 12

443

See also
ff In Chapter 6, Building Scalable Websites, the recipe entitled Chaining $_POST

validators discusses how to incorporate the basic validation concepts covered here
into a comprehensive filter chaining mechanism.

Safeguarding the PHP session
The PHP session mechanism is quite simple. Once the session is started using session_
start() or the php.ini session.autostart setting, the PHP engine generates a
unique token that is, by default, conveyed to the user by way of a cookie. On subsequent
requests, while the session is still considered active, the user's browser (or equivalent)
presents the session identifier, again usually by way of a cookie, for inspection. The PHP
engine then uses this identifier to locate the appropriate file on the server, populating $_
SESSION with the stored information. There are tremendous security concerns when the
session identifier is the sole means of identifying a returning website visitor. In this recipe, we
will present several techniques that will help you to safeguard your sessions, which, in turn,
will vastly improve the overall security of the website.

How to do it…
1.	 First of all, it's important to recognize how using the session as the sole means of

authentication can be dangerous. Imagine for a moment that when a valid user logs
in to your website, that you set a loggedIn flag in $_SESSION:
session_start();
$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;
if (isset($_POST['login'])) {
 if ($_POST['username'] == // username lookup
 && $_POST['password'] == // password lookup) {
 $loggedIn = TRUE;
 $_SESSION['isLoggedIn'] = TRUE;
 }
}

2.	 In your program logic, you allow the user to see sensitive information if $_
SESSION['isLoggedIn'] is set to TRUE:

Secret Info

<?php if ($loggedIn) echo // secret information; ?>

Improving Web Security

444

3.	 If an attacker were to obtain the session identifier, for example, by means of a
successfully executed Cross-site scripting (XSS) attack, all he/she would need to do
would be to set the value of the PHPSESSID cookie to the illegally obtained one, and
they are now viewed by your application as a valid user.

4.	 One quick and easy way to narrow the window of time during which the PHPSESSID is
valid is to use session_regenerate_id(). This very simple command generates
a new session identifier, invalidates the old one, maintains session data intact, and
has a minimal impact on performance. This command can only be executed after the
session has started:
session_start();
session_regenerate_id();

5.	 Another often overlooked technique is to ensure that web visitors have a logout
option. It is important, however, to not only destroy the session using session_
destroy(), but also to unset $_SESSION data and to expire the session cookie:
session_unset();
session_destroy();
setcookie('PHPSESSID', 0, time() - 3600);

6.	 Another easy technique that can be used to prevent session hijacking is to develop a
finger-print or thumb-print of the website visitor. One way to implement this technique
is to collect information unique to the website visitor over and above the session
identifier. Such information includes the user agent (that is, the browser), languages
accepted, and remote IP address. You can derive a simple hash from this information,
and store the hash on the server in a separate file. The next time the user visits the
website, if you have determined they are logged in based on session information, you
can then perform a secondary verification by matching finger-prints:

$remotePrint = md5($_SERVER['REMOTE_ADDR']
 . $_SERVER['HTTP_USER_AGENT']
 . $_SERVER['HTTP_ACCEPT_LANGUAGE']);
$printsMatch = file_exists(THUMB_PRINT_DIR . $remotePrint);
if ($loggedIn && !$printsMatch) {
 $info = 'SESSION INVALID!!!';
 error_log('Session Invalid: ' . date('Y-m-d H:i:s'), 0);
 // take appropriate action
}

We are using md5() as it's a fast hashing algorithm and is well suited for
internal usage. It is not recommended to use md5() for any external use
as it is subject to brute-force attacks.

Chapter 12

445

How it works…
To demonstrate how a session is vulnerable, code a simple login script that sets a $_
SESSION['isLoggedIn'] flag upon successful login. You could call the file chap_12_
session_hijack.php:

session_start();
$loggedUser = $_SESSION['loggedUser'] ?? '';
$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;
$username = 'test';
$password = 'password';
$info = 'You Can Now See Super Secret Information!!!';

if (isset($_POST['login'])) {
 if ($_POST['username'] == $username
 && $_POST['password'] == $password) {
 $loggedIn = TRUE;
 $_SESSION['isLoggedIn'] = TRUE;
 $_SESSION['loggedUser'] = $username;
 $loggedUser = $username;
 }
} elseif (isset($_POST['logout'])) {
 session_destroy();
}

You can then add code that displays a simple login form. To test for session vulnerability,
follow this procedure using the chap_12_session_hijack.php file we just created:

1.	 Change to the directory containing the file.

2.	 Run the php -S localhost:8080 command.

3.	 Using one browser, open the URL http://localhost:8080/<filename>.

4.	 Login as user test with a password as password.

5.	 You should be able to see You Can Now See Super Secret Information!!!.

6.	 Refresh the page: each time, you should see a new session identifier.

7.	 Copy the value of the PHPSESSID cookie.

8.	 Open another browser to the same web page.

9.	 Modify the cookie sent by the browser by copying the value of PHPSESSID.

Improving Web Security

446

For illustration, we are also showing the value of $_COOKIE and $_SESSION, shown in the
following screenshot using the Vivaldi browser:

We then copy the value of PHPSESSID, open a Firefox browser, and use a tool called Tamper
Data to modify the value of the cookie:

Chapter 12

447

You can see in the next screenshot that we are now an authenticated user without entering
the username or password:

You can now implement the changes discussed in the preceding steps. Copy the file created
previously to chap_12_session_protected.php. Now go ahead and regenerate the
session ID:

<?php
define('THUMB_PRINT_DIR', __DIR__ . '/../data/');
session_start();
session_regenerate_id();

Next, initialize variables and determine the logged in status (as before):

$username = 'test';
$password = 'password';
$info = 'You Can Now See Super Secret Information!!!';
$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;
$loggedUser = $_SESSION['user'] ?? 'guest';

You can add a session thumb-print using the remote address, user agent, and language
settings:

$remotePrint = md5($_SERVER['REMOTE_ADDR']
 . $_SERVER['HTTP_USER_AGENT']

Improving Web Security

448

 . $_SERVER['HTTP_ACCEPT_LANGUAGE']);
$printsMatch = file_exists(THUMB_PRINT_DIR . $remotePrint);

If the login is successful, we store thumb-print info and login status in the session:

if (isset($_POST['login'])) {
 if ($_POST['username'] == $username
 && $_POST['password'] == $password) {
 $loggedIn = TRUE;
 $_SESSION['user'] = strip_tags($username);
 $_SESSION['isLoggedIn'] = TRUE;
 file_put_contents(
 THUMB_PRINT_DIR . $remotePrint, $remotePrint);
 }

You can also check for the logout option and implement a proper logout procedure: unset
$_SESSION variables, invalidate the session, and expire the cookie. You can also remove the
thumb-print file and implement a redirect:

} elseif (isset($_POST['logout'])) {
 session_unset();
 session_destroy();
 setcookie('PHPSESSID', 0, time() - 3600);
 if (file_exists(THUMB_PRINT_DIR . $remotePrint))
 unlink(THUMB_PRINT_DIR . $remotePrint);
 header('Location: ' . $_SERVER['REQUEST_URI']);
 exit;

Otherwise, if the operation is not login or logout, you can check to see whether the user is
considered logged in, and if the thumb-print doesn't match, the session is considered invalid,
and the appropriate action is taken:

} elseif ($loggedIn && !$printsMatch) {
 $info = 'SESSION INVALID!!!';
 error_log('Session Invalid: ' . date('Y-m-d H:i:s'), 0);
 // take appropriate action
}

You can now run the same procedure as mentioned previously using the new chap_12_
session_protected.php file. The first thing you will notice is that the session is now
considered invalid. The output will look something like this:

Chapter 12

449

The reason for this is that the thumb-print does not match as you are now using a different
browser. Likewise, if you refresh the page of the first browser, the session identifier is
regenerated, making any previously copied identifier obsolete. Finally, the logout button will
completely clear session information.

See also
For an excellent overview of website vulnerabilities, please refer to the article present at
https://www.owasp.org/index.php/Category:Vulnerability. For information on
session hijacking, refer to https://www.owasp.org/index.php/Session_hijacking_
attack.

Securing forms with a token
This recipe presents another very simple technique that will safeguard your forms against
Cross Site Request Forgery (CSRF) attacks. Simply put, a CSRF attack is possible when,
possibly using other techniques, an attacker is able to infect a web page on your website.
In most cases, the infected page will then start issuing requests (that is, using JavaScript to
purchase items, or make settings changes) using the credentials of a valid, logged-in user.
It's extremely difficult for your application to detect such activity. One measure that can easily
be taken is to generate a random token that is included in every form to be submitted. Since
the infected page will not have access to the token, nor have the ability to generate one that
matches, form validation will fail.

https://www.owasp.org/index.php/Category:Vulnerability
https://www.owasp.org/index.php/Session_hijacking_attack
https://www.owasp.org/index.php/Session_hijacking_attack

Improving Web Security

450

How to do it…
1.	 First, to demonstrate the problem, we create a web page that simulates an infected

page that generates a request to post an entry to the database. For this illustration,
we will call the file chap_12_form_csrf_test_unprotected.html:
<!DOCTYPE html>
 <body onload="load()">
 <form action="/chap_12_form_unprotected.php"
 method="post" id="csrf_test" name="csrf_test">
 <input name="name" type="hidden" value="No Goodnick" />
 <input name="email" type="hidden" value="malicious@owasp.org" />
 <input name="comments" type="hidden"
 value="Form is vulnerable to CSRF attacks!" />
 <input name="process" type="hidden" value="1" />
 </form>
 <script>
 function load() { document.forms['csrf_test'].submit(); }
 </script>
</body>
</html>

2.	 Next, we create a script called chap_12_form_unprotected.php that responds to
the form posting. As with other calling programs in this book, we set up autoloading
and use the Application\Database\Connection class covered in Chapter 5,
Interacting with a Database:
<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);

3.	 We then check to see the process button has been pressed, and even implement a
filtering mechanism, as covered in the Filtering $_POST data recipe in this chapter.
This is to prove that a CSRF attack is easily able to bypass filters:
if ($_POST['process']) {
 $filter = [
 'trim' => function ($item) { return trim($item); },
 'email' => function ($item) {
 return filter_var($item, FILTER_SANITIZE_EMAIL); },
 'length' => function ($item, $length) {
 return substr($item, 0, $length); },
 'stripTags' => function ($item) {

Chapter 12

451

 return strip_tags($item); },
];

 $assignments = [
 '*' => ['trim' => NULL, 'stripTags' => NULL],
 'email' => ['length' => 249, 'email' => NULL],
 'name' => ['length' => 128],
 'comments'=> ['length' => 249],
];

 $data = $_POST;
 foreach ($data as $field => $item) {
 foreach ($assignments['*'] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
 if (isset($assignments[$field])) {
 foreach ($assignments[$field] as $key => $option) {
 $item = $filter[$key]($item, $option);
 }
 $filteredData[$field] = $item;
 }
 }

4.	 Finally, we insert the filtered data into the database using a prepared statement. We
then redirect to another script, called chap_12_form_view_results.php, which
simply dumps the contents of the visitors table:
try {
 $filteredData['visit_date'] = date('Y-m-d H:i:s');
 $sql = 'INSERT INTO visitors '
 . ' (email,name,comments,visit_date) '
 . 'VALUES (:email,:name,:comments,:visit_date)';
 $insertStmt = $conn->pdo->prepare($sql);
 $insertStmt->execute($filteredData);
} catch (PDOException $e) {
 echo $e->getMessage();
}
}
header('Location: /chap_12_form_view_results.php');
exit;

5.	 The result, of course, is that the attack is allowed, despite filtering and the use of
prepared statements.

Improving Web Security

452

6.	 Implementing the form protection token is actually quite easy! First of all, you need
to generate the token and store it in the session. We take advantage of the new
random_bytes() PHP 7 function to generate a truly random token, one which will
be difficult, if not impossible, for an attacker to match:
session_start();
$token = urlencode(base64_encode((random_bytes(32))));
$_SESSION['token'] = $token;

The output of random_bytes() is binary. We use base64_
encode() to convert it into a usable string. We then further process it
using urlencode() so that it is properly rendered in an HTML form.

7.	 When we render the form, we then present the token as a hidden field:
<input type="hidden" name="token" value="<?= $token ?>" />

8.	 We then copy and alter the chap_12_form_unprotected.php script mentioned
previously, adding logic to first check to see whether the token matches the one
stored in the session. Note that we unset the current token to make it invalid for
future use. We call the new script chap_12_form_protected_with_token.php:

if ($_POST['process']) {
 $sessToken = $_SESSION['token'] ?? 1;
 $postToken = $_POST['token'] ?? 2;
 unset($_SESSION['token']);
 if ($sessToken != $postToken) {
 $_SESSION['message'] = 'ERROR: token mismatch';
 } else {
 $_SESSION['message'] = 'SUCCESS: form processed';
 // continue with form processing
 }
}

How it works…
To test how an infected web page might launch a CSRF attack, create the following files, as
shown earlier in the recipe:

ff chap_12_form_csrf_test_unprotected.html

ff chap_12_form_unprotected.php

Chapter 12

453

You can then define a file called chap_12_form_view_results.php, which dumps the
visitors table:

<?php
session_start();
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Database\Connection;
$conn = new Connection(include __DIR__ . DB_CONFIG_FILE);
$message = $_SESSION['message'] ?? '';
unset($_SESSION['message']);
$stmt = $conn->pdo->query('SELECT * FROM visitors');
?>
<!DOCTYPE html>
<body>
<div class="container">
 <h1>CSRF Protection</h1>
 <h3>Visitors Table</h3>
 <?php while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) : ?>
 <pre><?php echo implode(':', $row); ?></pre>
 <?php endwhile; ?>
 <?php if ($message) : ?>
 <?= $message; ?>
 <?php endif; ?>
</div>
</body>
</html>

From a browser, launch chap_12_form_csrf_test_unprotected.html. Here is how the
output might appear:

Improving Web Security

454

As you can see, the attack was successful despite filtering and the use of prepared
statements!

Next, copy the chap_12_form_unprotected.php file to chap_12_form_protected.
php. Make the change indicated in step 8 in the recipe. You will also need to alter the test
HTML file, copying chap_12_form_csrf_test_unprotected.html to chap_12_form_
csrf_test_protected.html. Change the value for the action parameter in the FORM tag
as follows:

<form action="/chap_12_form_protected_with_token.php"
 method="post" id="csrf_test" name="csrf_test">

When you run the new HTML file from a browser, it calls chap_12_form_protected.php,
which looks for a token that does not exist. Here is the expected output:

Finally, go ahead and define a file called chap_12_form_protected.php that generates a
token and displays it as a hidden element:

<?php
session_start();
$token = urlencode(base64_encode((random_bytes(32))));
$_SESSION['token'] = $token;
?>
<!DOCTYPE html>
<body onload="load()">
<div class="container">
<h1>CSRF Protected Form</h1>
<form action="/chap_12_form_protected_with_token.php"
 method="post" id="csrf_test" name="csrf_test">
<table>
<tr><th>Name</th><td><input name="name" type="text" /></td></tr>
<tr><th>Email</th><td><input name="email" type="text" /></td></tr>
<tr><th>Comments</th><td>
<input name="comments" type="textarea" rows=4 cols=80 />
</td></tr>
<tr><th> </th><td>

Chapter 12

455

<input name="process" type="submit" value="Process" />
</td></tr>
</table>
<input type="hidden" name="token" value="<?= $token ?>" />
</form>

 CLICK HERE to view results
</div>
</body>
</html>

When we display and submit data from the form, the token is validated and the data insertion
is allowed to continue, as shown here:

See also
For more information on CSFR attacks, please refer to https://www.owasp.org/index.
php/Cross-Site_Request_Forgery_(CSRF).

Building a secure password generator
A common misconception is that the only way attackers crack hashed passwords is by using
brute force attacks and rainbow tables. Although this is often the first pass in an attack
sequence, attackers will use much more sophisticated attacks on a second, third, or fourth
pass. Other attacks include combination, dictionary, mask, and rules-based. Dictionary
attacks use a database of words literally from the dictionary to guess passwords. Combination
is where dictionary words are combined. Mask attacks are similar to brute force, but more
selective, thus cutting down the time to crack. Rules-based attacks will detect things such as
substituting the number 0 for the letter o.

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Improving Web Security

456

The good news is that by simply increasing the length of the password beyond the magic
length of six characters exponentially increases the time to crack the hashed password. Other
factors, such as interspersing uppercase with lowercase letters randomly, random digits, and
special characters, will also have an exponential impact on the time to crack. At the end of the
day, we need to bear in mind that a human being will eventually need to enter the passwords
created, which means that need to be at least marginally memorable.

Best practice
Passwords should be stored as a hash, and never as plain text. MD5 and
SHA* are no longer considered secure (although SHA* is much better than
MD5). Using a utility such as oclHashcat, an attacker can generate an
average of 55 billion attempts per second on a password hashed using MD5
that has been made available through an exploit (that is, a successful SQL
injection attack).

How to do it…
1.	 First, we define a Application\Security\PassGen class that will hold the

methods needed for password generation. We also define certain class constants
and properties that will be used as part of the process:
namespace Application\Security;
class PassGen
{
 const SOURCE_SUFFIX = 'src';
 const SPECIAL_CHARS =
 '\`¬|!"£$%^&*()_-+={}[]:@~;\'#<>?,./|\\';
 protected $algorithm;
 protected $sourceList;
 protected $word;
 protected $list;

2.	 We then define low-level methods that will be used for password generation. As the
names suggest, digits() produces random digits, and special() produces a
single character from the SPECIAL_CHARS class constant:
public function digits($max = 999)
{
 return random_int(1, $max);
}

public function special()
{
 $maxSpecial = strlen(self::SPECIAL_CHARS) - 1;
 return self::SPECIAL_CHARS[random_int(0, $maxSpecial)];
}

Chapter 12

457

Notice that we are frequently using the new PHP 7 function random_
int() in this example. Although marginally slower, this method offers true
Cryptographically Secure Pseudo Random Number Generator (CSPRNG)
capabilities compared to the more dated rand() function.

3.	 Now comes the tricky part: generating a hard-to-guess word. This is where the
$wordSource constructor parameter comes into play. It is an array of websites from
which our word base will be derived. Accordingly, we need a method that will pull a
unique list of words from the sources indicated, and store the results in a file. We
accept the $wordSource array as an argument, and loop through each URL. We use
md5() to produce a hash of the website name, which is then built into a filename.
The newly produced filename is then stored in $sourceList:
public function processSource(
$wordSource, $minWordLength, $cacheDir)
{
 foreach ($wordSource as $html) {
 $hashKey = md5($html);
 $sourceFile = $cacheDir . '/' . $hashKey . '.'
 . self::SOURCE_SUFFIX;
 $this->sourceList[] = $sourceFile;

4.	 If the file doesn't exist, or is zero-byte, we process the contents. If the source is HTML,
we only accept content inside the <body> tag. We then use str_word_count() to
pull a list of words out of the string, also employing strip_tags() to remove any
markup:
if (!file_exists($sourceFile) || filesize($sourceFile) == 0) {
 echo 'Processing: ' . $html . PHP_EOL;
 $contents = file_get_contents($html);
 if (preg_match('/<body>(.*)<\/body>/i',
 $contents, $matches)) {
 $contents = $matches[1];
 }
 $list = str_word_count(strip_tags($contents), 1);

5.	 We then remove any words that are too short, and use array_unique() to get rid
of duplicates. The final result is stored in a file:
 foreach ($list as $key => $value) {
 if (strlen($value) < $minWordLength) {
 $list[$key] = 'xxxxxx';
 } else {
 $list[$key] = trim($value);
 }
 }

Improving Web Security

458

 $list = array_unique($list);
 file_put_contents($sourceFile, implode("\n",$list));
 }
 }
 return TRUE;
}

6.	 Next, we define a method that flips random letters in the word to uppercase:
public function flipUpper($word)
{
 $maxLen = strlen($word);
 $numFlips = random_int(1, $maxLen - 1);
 $flipped = strtolower($word);
 for ($x = 0; $x < $numFlips; $x++) {
 $pos = random_int(0, $maxLen - 1);
 $word[$pos] = strtoupper($word[$pos]);
 }
 return $word;
}

7.	 Finally, we are ready to define a method that chooses a word from our source. We
choose a word source at random, and use the file() function to read from the
appropriate cached file:
public function word()
{
 $wsKey = random_int(0, count($this->sourceList) - 1);
 $list = file($this->sourceList[$wsKey]);
 $maxList = count($list) - 1;
 $key = random_int(0, $maxList);
 $word = $list[$key];
 return $this->flipUpper($word);
}

8.	 So that we do not always produce passwords of the same pattern, we define a
method that allows us to place the various components of a password in different
positions in the final password string. The algorithms are defined as an array of
method calls available within this class. So, for example, an algorithm of ['word',
'digits', 'word', 'special'] might end up looking like hElLo123aUTo!:
public function initAlgorithm()
{
 $this->algorithm = [
 ['word', 'digits', 'word', 'special'],
 ['digits', 'word', 'special', 'word'],
 ['word', 'word', 'special', 'digits'],

Chapter 12

459

 ['special', 'word', 'special', 'digits'],
 ['word', 'special', 'digits', 'word', 'special'],
 ['special', 'word', 'special', 'digits',
 'special', 'word', 'special'],
];
}

9.	 The constructor accepts the word source array, minimum word length, and location of
the cache directory. It then processes the source files and initializes the algorithms:
public function __construct(
 array $wordSource, $minWordLength, $cacheDir)
{
 $this->processSource($wordSource, $minWordLength, $cacheDir);
 $this->initAlgorithm();
}

10.	 Finally, we are able to define the method that actually generates the password. All it
needs to do is to select an algorithm at random, and then loop through, calling the
appropriate methods:
public function generate()
{
 $pwd = '';
 $key = random_int(0, count($this->algorithm) - 1);
 foreach ($this->algorithm[$key] as $method) {
 $pwd .= $this->$method();
 }
 return str_replace("\n", '', $pwd);
}

}

How it works…
First, you will need to place the code described in the previous recipe into a file called
PassGen.php in the Application\Security folder. Now you can create a calling program
called chap_12_password_generate.php that sets up autoloading, uses PassGen, and
defines the location of the cache directory:

<?php
define('CACHE_DIR', __DIR__ . '/cache');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Security\PassGen;

Improving Web Security

460

Next, you will need to define an array of websites that will be used as a source for the word-
base to be used in password generation. In this illustration, we will choose from the Project
Gutenberg texts Ulysses (J. Joyce), War and Peace (L. Tolstoy), and Pride and Prejudice
(J. Austen):

$source = [
 'https://www.gutenberg.org/files/4300/4300-0.txt',
 'https://www.gutenberg.org/files/2600/2600-h/2600-h.htm',
 'https://www.gutenberg.org/files/1342/1342-h/1342-h.htm',
];

Next, we create the PassGen instance, and run generate():

$passGen = new PassGen($source, 4, CACHE_DIR);
echo $passGen->generate();

Here are a few example passwords produced by PassGen:

See also
An excellent article on how an attacker would approach cracking a password can be viewed
at http://arstechnica.com/security/2013/05/how-crackers-make-minced-
meat-out-of-your-passwords/. To find out more about brute force attacks you can refer
to https://www.owasp.org/index.php/Brute_force_attack. For information on
oclHashcat, see this page: http://hashcat.net/oclhashcat/.

http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
http://arstechnica.com/security/2013/05/how-crackers-make-minced-meat-out-of-your-passwords/
https://www.owasp.org/index.php/Brute_force_attack
http://hashcat.net/oclhashcat/

Chapter 12

461

Safeguarding forms with a CAPTCHA
CAPTCHA is actually an acronym for Completely Automated Public Turing Test to Tell
Computers and Humans Apart. The technique is similar to the one presented in the
preceding recipe, Securing forms with a token. The difference is that instead of storing the
token in a hidden form input field, the token is rendered into a graphic that is difficult for
an automated attack system to decipher. Also, the intent of a CAPTCHA is slightly different
from a form token: it is designed to confirm that the web visitor is a human being, and not an
automated system.

How to do it…
1.	 There are several approaches to CAPTCHA: presenting a question based on

knowledge only a human would possess, text tricks, and a graphics image that needs
to be interpreted.

2.	 The image approach presents web visitors with an image with heavily distorted letters
and/or numbers. This approach can be complicated, however, in that it relies on the
GD extension, which may not be available on all servers. The GD extension can be
difficult to compile, and has heavy dependencies on various libraries that must be
present on the host server.

3.	 The text approach is to present a series of letters and/or numbers, and give the web
visitor a simple instruction such as please type this backwards. Another variation is to
use ASCII "art" to form characters that a human web visitor is able to interpret.

4.	 Finally, you might have a question/answer approach with questions such as The head
is attached to the body by what body part, and have answers such as Arm, Leg, and
Neck. The downside to this approach is that an automated attack system will have a
1 in 3 chance of passing the test.

Generating a text CAPTCHA
1.	 For this illustration, we will start with the text approach, and follow with the image

approach. In either case, we first need to define a class that generates the phrase
to be presented (and decoded by the web visitor). For this purpose, we define an
Application\Captcha\Phrase class. We also define properties and class
constants used in the phrase generation process:
namespace Application\Captcha;
class Phrase
{
 const DEFAULT_LENGTH = 5;
 const DEFAULT_NUMBERS = '0123456789';
 const DEFAULT_UPPER = 'ABCDEFGHJKLMNOPQRSTUVWXYZ';
 const DEFAULT_LOWER = 'abcdefghijklmnopqrstuvwxyz';

Improving Web Security

462

 const DEFAULT_SPECIAL =
 '¬\`|!"£$%^&*()_-+={}[]:;@\'~#<,>.?/|\\';
 const DEFAULT_SUPPRESS = ['O','l'];

 protected $phrase;
 protected $includeNumbers;
 protected $includeUpper;
 protected $includeLower;
 protected $includeSpecial;
 protected $otherChars;
 protected $suppressChars;
 protected $string;
 protected $length;

2.	 The constructor, as you would expect, accepts values for the various properties,
with defaults assigned so that an instance can be created without having to specify
any parameters. The $include* flags are used to signal which character sets
will be present in the base string from which the phrase will be generated. For
example, if you wish to only have numbers, $includeUpper and $includeLower
would both be set to FALSE. $otherChars is provided for extra flexibility. Finally,
$suppressChars represents an array of characters that will be removed from the
base string. The default removes uppercase O and lowercase l:
public function __construct(
 $length = NULL,
 $includeNumbers = TRUE,
 $includeUpper= TRUE,
 $includeLower= TRUE,
 $includeSpecial = FALSE,
 $otherChars = NULL,
 array $suppressChars = NULL)
 {
 $this->length = $length ?? self::DEFAULT_LENGTH;
 $this->includeNumbers = $includeNumbers;
 $this->includeUpper = $includeUpper;
 $this->includeLower = $includeLower;
 $this->includeSpecial = $includeSpecial;
 $this->otherChars = $otherChars;
 $this->suppressChars = $suppressChars
 ?? self::DEFAULT_SUPPRESS;
 $this->phrase = $this->generatePhrase();
 }

Chapter 12

463

3.	 We then define a series of getters and setters, one for each property. Please note that
we only show the first two in order to conserve space.
public function getString()
{
 return $this->string;
}

public function setString($string)
{
 $this->string = $string;
}

// other getters and setters not shown

4.	 We next need to define a method that initializes the base string. This consists of a
series of simple if statements that check the various $include* flags and append
to the base string as appropriate. At the end, we use str_replace() to remove the
characters represented in $suppressChars:
public function initString()
{
 $string = '';
 if ($this->includeNumbers) {
 $string .= self::DEFAULT_NUMBERS;
 }
 if ($this->includeUpper) {
 $string .= self::DEFAULT_UPPER;
 }
 if ($this->includeLower) {
 $string .= self::DEFAULT_LOWER;
 }
 if ($this->includeSpecial) {
 $string .= self::DEFAULT_SPECIAL;
 }
 if ($this->otherChars) {
 $string .= $this->otherChars;
 }
 if ($this->suppressChars) {
 $string = str_replace(
 $this->suppressChars, '', $string);
 }
 return $string;
}

Improving Web Security

464

Best practice
Get rid of letters that can be confused with numbers (that is, the letter O
can be confused with the number 0, and a lowercase l can be confused
with the number 1.

5.	 We are now ready to define the core method that generates the random phrase that
the CAPTCHA presents to website visitors. We set up a simple for() loop, and use
the new PHP 7 random_int() function to jump around in the base string:
public function generatePhrase()
{
 $phrase = '';
 $this->string = $this->initString();
 $max = strlen($this->string) - 1;
 for ($x = 0; $x < $this->length; $x++) {
 $phrase .= substr(
 $this->string, random_int(0, $max), 1);
 }
 return $phrase;
}
}

6.	 Now we turn our attention away from the phrase and onto the class that will produce
a text CAPTCHA. For this purpose, we first define an interface so that, in the future,
we can create additional CAPTCHA classes that all make use of Application\
Captcha\Phrase. Note that getImage() will return text, text art, or an actual
image, depending on which class we decide to use:
namespace Application\Captcha;
interface CaptchaInterface
{
 public function getLabel();
 public function getImage();
 public function getPhrase();
}

7.	 For a text CAPTCHA, we define a Application\Captcha\Reverse class. The
reason for this name is that this class produces not just text, but text in reverse. The
__construct() method builds an instance of Phrase. Note that getImage()
returns the phrase in reverse:

namespace Application\Captcha;
class Reverse implements CaptchaInterface
{
 const DEFAULT_LABEL = 'Type this in reverse';
 const DEFAULT_LENGTH = 6;

Chapter 12

465

 protected $phrase;
 public function __construct(
 $label = self::DEFAULT_LABEL,
 $length = self:: DEFAULT_LENGTH,
 $includeNumbers = TRUE,
 $includeUpper = TRUE,
 $includeLower = TRUE,
 $includeSpecial = FALSE,
 $otherChars = NULL,
 array $suppressChars = NULL)
 {
 $this->label = $label;
 $this->phrase = new Phrase(
 $length,
 $includeNumbers,
 $includeUpper,
 $includeLower,
 $includeSpecial,
 $otherChars,
 $suppressChars);
 }

 public function getLabel()
 {
 return $this->label;
 }

 public function getImage()
 {
 return strrev($this->phrase->getPhrase());
 }

 public function getPhrase()
 {
 return $this->phrase->getPhrase();
 }

}

Generating an image CAPTCHA
1.	 The image approach, as you can well imagine, is much more complicated. The phrase

generation process is the same. The main difference is that not only do we need to
imprint the phrase on a graphic, but we also need to distort each letter differently and
introduce noise in the form of random dots.

Improving Web Security

466

2.	 We define a Application\Captcha\Image class that implements
CaptchaInterface. The class constants and properties include not only those
needed for phrase generation, but what is needed for image generation as well:
namespace Application\Captcha;
use DirectoryIterator;
class Image implements CaptchaInterface
{

 const DEFAULT_WIDTH = 200;
 const DEFAULT_HEIGHT = 50;
 const DEFAULT_LABEL = 'Enter this phrase';
 const DEFAULT_BG_COLOR = [255,255,255];
 const DEFAULT_URL = '/captcha';
 const IMAGE_PREFIX = 'CAPTCHA_';
 const IMAGE_SUFFIX = '.jpg';
 const IMAGE_EXP_TIME = 300; // seconds
 const ERROR_REQUIRES_GD = 'Requires the GD extension + '
 . ' the JPEG library';
 const ERROR_IMAGE = 'Unable to generate image';

 protected $phrase;
 protected $imageFn;
 protected $label;
 protected $imageWidth;
 protected $imageHeight;
 protected $imageRGB;
 protected $imageDir;
 protected $imageUrl;

3.	 The constructor needs to accept all the arguments required for phrase generation,
as described in the previous steps. In addition, we need to accept arguments
required for image generation. The two mandatory parameters are $imageDir and
$imageUrl. The first is where the graphic will be written. The second is the base
URL, after which we will append the generated filename. $imageFont is provided in
case we want to provide TrueType fonts, which will produce a more secure CAPTCHA.
Otherwise, we're limited to the default fonts which, to quote a line in a famous movie,
ain't a pretty sight:
public function __construct(
 $imageDir,
 $imageUrl,
 $imageFont = NULL,
 $label = NULL,
 $length = NULL,
 $includeNumbers = TRUE,

Chapter 12

467

 $includeUpper= TRUE,
 $includeLower= TRUE,
 $includeSpecial = FALSE,
 $otherChars = NULL,
 array $suppressChars = NULL,
 $imageWidth = NULL,
 $imageHeight = NULL,
 array $imageRGB = NULL
)
{

4.	 Next, still in the constructor, we check to see whether the imagecreatetruecolor
function exists. If this comes back as FALSE, we know the GD extension is not
available. Otherwise, we assign parameters to properties, generate the phrase,
remove old images, and write out the CAPTCHA graphic:
if (!function_exists('imagecreatetruecolor')) {
 throw new \Exception(self::ERROR_REQUIRES_GD);
}
$this->imageDir = $imageDir;
$this->imageUrl = $imageUrl;
$this->imageFont = $imageFont;
$this->label = $label ?? self::DEFAULT_LABEL;
$this->imageRGB = $imageRGB ?? self::DEFAULT_BG_COLOR;
$this->imageWidth = $imageWidth ?? self::DEFAULT_WIDTH;
$this->imageHeight= $imageHeight ?? self::DEFAULT_HEIGHT;
if (substr($imageUrl, -1, 1) == '/') {
 $imageUrl = substr($imageUrl, 0, -1);
}
$this->imageUrl = $imageUrl;
if (substr($imageDir, -1, 1) == DIRECTORY_SEPARATOR) {
 $imageDir = substr($imageDir, 0, -1);
}

$this->phrase = new Phrase(
 $length,
 $includeNumbers,
 $includeUpper,
 $includeLower,
 $includeSpecial,
 $otherChars,
 $suppressChars);
$this->removeOldImages();
$this->generateJpg();
}

Improving Web Security

468

5.	 The process of removing old images is extremely important; otherwise we
will end up with a directory filled with expired CAPTCHA images! We use the
DirectoryIterator class to scan the designated directory and check the access
time. We calculate an old image file as one that is the current time minus the value
specified by IMAGE_EXP_TIME:
public function removeOldImages()
{
 $old = time() - self::IMAGE_EXP_TIME;
 foreach (new DirectoryIterator($this->imageDir)
 as $fileInfo) {
 if($fileInfo->isDot()) continue;
 if ($fileInfo->getATime() < $old) {
 unlink($this->imageDir . DIRECTORY_SEPARATOR
 . $fileInfo->getFilename());
 }
 }
}

6.	 We are now ready to move on to the main show. First, we split the $imageRGB array
into $red, $green, and $blue. We use the core imagecreatetruecolor()
function to generate the base graphic with the width and height specified. We use the
RGB values to colorize the background:
public function generateJpg()
{
 try {
 list($red,$green,$blue) = $this->imageRGB;
 $im = imagecreatetruecolor(
 $this->imageWidth, $this->imageHeight);
 $black = imagecolorallocate($im, 0, 0, 0);
 $imageBgColor = imagecolorallocate(
 $im, $red, $green, $blue);
 imagefilledrectangle($im, 0, 0, $this->imageWidth,
 $this->imageHeight, $imageBgColor);

7.	 Next, we define x and y margins based on image width and height. We then initialize
variables to be used to write the phrase onto the graphic. We then loop a number of
times that matches the length of the phrase:
$xMargin = (int) ($this->imageWidth * .1 + .5);
$yMargin = (int) ($this->imageHeight * .3 + .5);
$phrase = $this->getPhrase();
$max = strlen($phrase);
$count = 0;
$x = $xMargin;
$size = 5;
for ($i = 0; $i < $max; $i++) {

Chapter 12

469

8.	 If $imageFont is specified, we are able to write each character with a different size
and angle. We also need to adjust the x axis (that is, horizontal) value according to
the size:
if ($this->imageFont) {
 $size = rand(12, 32);
 $angle = rand(0, 30);
 $y = rand($yMargin + $size, $this->imageHeight);
 imagettftext($im, $size, $angle, $x, $y, $black,
 $this->imageFont, $phrase[$i]);
 $x += (int) ($size + rand(0,5));

9.	 Otherwise, we're stuck with the default fonts. We use the largest size of 5, as smaller
sizes are unreadable. We provide a low level of distortion by alternating between
imagechar(), which writes the image normally, and imagecharup(), which writes
it sideways:
} else {
 $y = rand(0, ($this->imageHeight - $yMargin));
 if ($count++ & 1) {
 imagechar($im, 5, $x, $y, $phrase[$i], $black);
 } else {
 imagecharup($im, 5, $x, $y, $phrase[$i], $black);
 }
 $x += (int) ($size * 1.2);
 }
} // end for ($i = 0; $i < $max; $i++)

10.	 Next we need to add noise in the form of random dots. This is necessary in order to
make the image harder for automated systems to detect. It is also recommended that
you add code to draw a few lines as well:
$numDots = rand(10, 999);
for ($i = 0; $i < $numDots; $i++) {
 imagesetpixel($im, rand(0, $this->imageWidth),
 rand(0, $this->imageHeight), $black);
}

11.	 We then create a random image filename using our old friend md5() with the date
and a random number from 0 to 9999 as arguments. Note that we can safely use
md5() as we are not trying to hide any secret information; we're merely interested
in generating a unique filename quickly. We wipe out the image object as well to
conserve memory:
$this->imageFn = self::IMAGE_PREFIX
. md5(date('YmdHis') . rand(0,9999))
. self::IMAGE_SUFFIX;
imagejpeg($im, $this->imageDir . DIRECTORY_SEPARATOR

Improving Web Security

470

. $this->imageFn);
imagedestroy($im);

12.	 The entire construct is in a try/catch block. If an error or exception is thrown, we
log the message and take the appropriate action:
} catch (\Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new \Exception(self::ERROR_IMAGE);
}
}

13.	 Finally, we define the methods required by the interface. Note that getImage()
returns an HTML tag, which can then be immediately displayed:

public function getLabel()
{
 return $this->label;
}

public function getImage()
{
 return sprintf('',
 $this->imageUrl, $this->imageFn);
}

public function getPhrase()
{
 return $this->phrase->getPhrase();
}

}

How it works…
Be sure to define the classes discussed in this recipe, summarized in the following table:

Class Subsection The steps it appears in
Application\Captcha\Phrase Generating a text

CAPTCHA
1 – 5

Application\Captcha\
CaptchaInterface

6

Application\Captcha\Reverse 7
Application\Captcha\Image Generating an image

CAPTCHA
2 - 13

Chapter 12

471

Next, define a calling program called chap_12_captcha_text.php that implements a text
CAPTCHA. You first need to set up autoloading and use the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Captcha\Reverse;

After that, be sure to start the session. You would use appropriate measures to protect
the session as well. To conserve space, we only show one simple measure, session_
regenerate_id():

session_start();
session_regenerate_id();

Next, you can define a function that creates the CAPTCHA; retrieves the phrase, label,
and image (in this case, reverse text); and stores the value in the session:

function setCaptcha(&$phrase, &$label, &$image)
{
 $captcha = new Reverse();
 $phrase = $captcha->getPhrase();
 $label = $captcha->getLabel();
 $image = $captcha->getImage();
 $_SESSION['phrase'] = $phrase;
}

Now is a good time to initialize variables and determine the loggedIn status:

$image = '';
$label = '';
$phrase = $_SESSION['phrase'] ?? '';
$message = '';
$info = 'You Can Now See Super Secret Information!!!';
$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;
$loggedUser = $_SESSION['user'] ?? 'guest';

You can then check to see whether the login button has been pressed. If so, check to see
whether the CAPTCHA phrase has been entered. If not, initialize a message informing the
user they need to enter the CAPTCHA phrase:

if (!empty($_POST['login'])) {
 if (empty($_POST['captcha'])) {
 $message = 'Enter Captcha Phrase and Login Information';

Improving Web Security

472

If the CAPTCHA phrase is present, check to see whether it matches what is stored in the
session. If it doesn't match, proceed as if the form is invalid. Otherwise, process the login as
you would have otherwise. For the purposes of this illustration, you can simulate a login by
using hard-coded values for the username and password:

} else {
 if ($_POST['captcha'] == $phrase) {
 $username = 'test';
 $password = 'password';
 if ($_POST['user'] == $username
 && $_POST['pass'] == $password) {
 $loggedIn = TRUE;
 $_SESSION['user'] = strip_tags($username);
 $_SESSION['isLoggedIn'] = TRUE;
 } else {
 $message = 'Invalid Login';
 }
 } else {
 $message = 'Invalid Captcha';
 }
}

You might also want to add code for a logout option, as described in the Safeguarding the PHP
session recipe:

} elseif (isset($_POST['logout'])) {
 session_unset();
 session_destroy();
 setcookie('PHPSESSID', 0, time() - 3600);
 header('Location: ' . $_SERVER['REQUEST_URI']);
 exit;
}

You can then run setCaptcha():

setCaptcha($phrase, $label, $image);

Lastly, don't forget the view logic, which, in this example, presents a basic login form. Inside
the form tag, you'll need to add view logic to display the CAPTCHA and label:

<tr>
 <th><?= $label; ?></th>
 <td><?= $image; ?><input type="text" name="captcha" /></td>
</tr>

Chapter 12

473

Here is the resulting output:

To demonstrate how to use the image CAPTCHA, copy the code from chap_12_captcha_
text.php to cha_12_captcha_image.php. We define constants that represent the
location of the directory in which we will write the CAPTCHA images. (Be sure to create this
directory!) Otherwise, the autoloading and use statement structure is similar. Note that we
also define a TrueType font. Differences are noted in bold:

<?php
define('IMAGE_DIR', __DIR__ . '/captcha');
define('IMAGE_URL', '/captcha');
define('IMAGE_FONT', __DIR__ . '/FreeSansBold.ttf');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Captcha\Image;

session_start();
session_regenerate_id();

Important!
Fonts can potentially be protected under copyright, trademark, patent,
or other intellectual property laws. If you use a font for which you are not
licensed, you and your customer could be held liable in court! Use an open
source font, or one that is available on the web server for which you have a
valid license.

Of course, in the setCaptcha() function, we use the Image class instead of Reverse:

function setCaptcha(&$phrase, &$label, &$image)
{
 $captcha = new Image(IMAGE_DIR, IMAGE_URL, IMAGE_FONT);
 $phrase = $captcha->getPhrase();

Improving Web Security

474

 $label = $captcha->getLabel();
 $image = $captcha->getImage();
 $_SESSION['phrase'] = $phrase;
 return $captcha;
}

Variable initialization is the same as the previous script, and login processing is identical to
the previous script:

$image = '';
$label = '';
$phrase = $_SESSION['phrase'] ?? '';
$message = '';
$info = 'You Can Now See Super Secret Information!!!';
$loggedIn = $_SESSION['isLoggedIn'] ?? FALSE;
$loggedUser = $_SESSION['user'] ?? 'guest';

if (!empty($_POST['login'])) {

 // etc. -- identical to chap_12_captcha_text.php

Even the view logic remains the same, as we are using getImage(), which, in the case of the
image CAPTCHA, returns directly usable HTML. Here is the output using a TrueType font:

There's more…
If you are not inclined to use the preceding code to generate your own in-house CAPTCHA,
there are plenty of libraries available. Most popular frameworks have this ability. Zend
Framework, for example, has its Zend\Captcha component class. There is also reCAPTCHA,
which is generally invoked as a service in which your application makes a call to an external
website that generates the CAPTCHA and token for you. A good place to start looking is
http://www.captcha.net/ website.

http://www.captcha.net/

Chapter 12

475

See also
For more information on the protection of fonts as intellectual property, refer to the
article present at https://en.wikipedia.org/wiki/Intellectual_property_
protection_of_typefaces.

Encrypting/decrypting without mcrypt
It is a little-known fact among members of the general PHP community that the mcrypt
extension, the core of most PHP-based encryption considered secure, is anything but secure.
One of the biggest issues, from a security perspective, is that the mcrypt extension requires
advanced knowledge of cryptography to successfully operate, which few programmers have. This
leads to gross misuse and ultimately problems such as a 1 in 256 chance of data corruption.
Not good odds. Furthermore, developer support for libmcrypt, the core library upon which
the mcrypt extension is based, was abandoned in 2007, which means the code base is out-of-
date, bug-ridden, and has no mechanism to apply patches. Accordingly, it is extremely important
to understand how to perform strong encryption/decryption without using mcrypt!

How to do it…
1.	 The solution to the problem posed previously, in case you're wondering, is to use

openssl. This extension is well maintained, and has modern and very strong
encryption/decryption capabilities.

Important
In order to use any openssl* functions, the openssl PHP extension
must be compiled and enabled! In addition, you will need to install the
latest OpenSSL package on your web server.

2.	 First, you will need to determine which cipher methods are available on your
installation. For this purpose, you can use the openssl_get_cipher_methods()
command. Examples will include algorithms based on Advanced Encryption
Standard (AES), BlowFish (BF), CAMELLIA, CAST5, Data Encryption Standard
(DES), Rivest Cipher (RC) (also affectionately known as Ron's Code), and SEED. You
will note that this method shows cipher methods duplicated in upper and lowercase.

https://en.wikipedia.org/wiki/Intellectual_property_protection_of_typefaces
https://en.wikipedia.org/wiki/Intellectual_property_protection_of_typefaces

Improving Web Security

476

3.	 Next, you will need to figure out which method is most appropriate for your needs.
Here is a table that gives a quick summary of the various methods:

Method Published Key size (bits) Key block
size
(bytes)

Notes

camellia 2000 128, 192, 256 16 Developed by Mitsubishi and NTT

aes 1998 128, 192, 256 16 Developed by Joan Daemen
and Vincent Rijmen. Originally
submitted as Rijndael

seed 1998 128 16 Developed by the Korea
Information Security Agency

cast5 1996 40 to 128 8 Developed by Carlisle Adams and
Stafford Tavares

bf 1993 1 to 448 8 Designed by Bruce Schneier

rc2 1987 8 to 1,024

defaults to 64

8 Designed by Ron Rivest (one of
the core founders of RSA)

des 1977 56 (+8 parity
bits)

8 Developed by IBM, based on
work done by Horst Feistel

4.	 Another consideration is what your preferred block cipher mode of operation is.
Common choices are summarized in this table:

Mode Stands For Notes

ECB Electronic Code Book Does not require initialization vector (IV);
supports parallelization for both encryption
and decryption; simple and fast; does not
hide data patterns; not recommended!!!

CBC Cipher Block Chaining Requires IV; subsequent blocks, even if
identical, are XOR'ed with previous block,
resulting in better overall encryption; if
the IVs are predictable, the first block can
be decoded, leaving remaining message
exposed; message must be padded to a
multiple of the cipher block size; supports
parallelization only for decryption

CFB Cipher Feedback Close relative of CBC, except that encryption
is performed in reverse

Chapter 12

477

Mode Stands For Notes

OFB Output Feedback Very symmetrical: encrypt and decrypt are
the same; does not supports parallelization
at all

CTR Counter Similar in operation to OFB; supports
parallelization for both encryption and
decryption

CCM Counter with CBC-MAC Derivative of CTR; only designed for block
length of 128 bits; provides authentication
and confidentiality; CBC-MAC stands
for Cipher Block Chaining - Message
Authentication Code

GCM Galois/Counter Mode Based on CTR mode; should use a different
IV for each stream to be encrypted;
exceptionally high throughput (compared to
other modes); supports parallelization for
both encryption and decryption

XTS XEX-based Tweaked-codebook
mode with ciphertext Stealing

Relatively new (2010) and fast; uses two
keys; increases the amount of data that can
be securely encrypted as one block

5.	 Before choosing a cipher method and mode, you will also need to determine whether
the encrypted contents needs to be unencrypted outside of your PHP application. For
example, if you are storing database credentials encrypted into a standalone text file,
do you need to have the ability to decrypt from the command line? If so, make sure
that the cipher method and operation mode you choose are supported by the target
operating system.

6.	 The number of bytes supplied for the IV varies according to the cipher method
chosen. For best results, use random_bytes() (new in PHP 7), which returns a true
CSPRNG sequence of bytes. The length of the IV varies considerably. Try a size of 16
to start with. If a warning is generated, the correct number of bytes to be supplied for
that algorithm will be shown, so adjust the size accordingly:
$iv = random_bytes(16);

Improving Web Security

478

7.	 To perform encryption, use openssl_encrypt(). Here are the parameters that
should be passed:

Parameter Notes

Data Plain text you need to encrypt.

Method One of the methods you identified using openssl_get_
cipher_methods(). identified as follows:

method - key_size - cipher_mode

So, for example, if you want a method of AES, a key size of
256, and GCM mode, you would enter aes-256-gcm.

Password Although documented as password, this parameter can be
viewed as a key. Use random_bytes() to generate a key
with a number of bytes to match the desired key size.

Options Until you gain more experience with openssl encryption, it
is recommended you stick with the default value of 0.

IV Use random_bytes() to generate an IV with a number of
bytes to match the cipher method.

8.	 As an example, suppose you wanted to choose the AES cipher method, a key size of
256, and XTS mode. Here is the code used to encrypt:
$plainText = 'Super Secret Credentials';
$key = random_bytes(16);
$method = 'aes-256-xts';
$cipherText = openssl_encrypt($plainText, $method, $key, 0, $iv);

9.	 To decrypt, use the same values for $key and $iv, along with the openssl_
decrypt() function:

$plainText = openssl_decrypt($cipherText, $method, $key, 0, $iv);

How it works…
In order to see which cipher methods are available, create a PHP script called chap_12_
openssl_encryption.php and run this command:

<?php
echo implode(', ', openssl_get_cipher_methods());

Chapter 12

479

The output should look something like this:

Next, you can add values for the plain text to be encrypted, the method, key, and IV. As an
example, try AES, with a key size of 256, using the XTS operating mode:

$plainText = 'Super Secret Credentials';
$method = 'aes-256-xts';
$key = random_bytes(16);
$iv = random_bytes(16);

To encrypt, you can use openssl_encrypt(), specifying the parameters configured
previously:

$cipherText = openssl_encrypt($plainText, $method, $key, 0, $iv);

You might also want to base 64-encode the result to make it more usable:

$cipherText = base64_encode($cipherText);

To decrypt, use the same $key and $iv values. Don't forget to un-encode the base 64 value
first:

$plainText = openssl_decrypt(base64_decode($cipherText),
$method, $key, 0, $iv);

Improving Web Security

480

Here is the output showing the base 64-encoded cipher text, followed by the decrypted
plain text:

If you supply an incorrect number of bytes for the IV, for the cipher method chosen, a warning
message will be shown:

There's more…
In PHP 7, there was a problem when using open_ssl_encrypt() and open_ssl_
decrypt() and the Authenticated Encrypt with Associated Data (AEAD) modes supported:
GCM and CCM. Accordingly, in PHP 7.1, three extra parameters have been added to these
functions, as follows:

Parameter Description
$tag Authentication tag passed by reference; variable value remains the

same if authentication fails
$aad Additional authentication data
$tag_length 4 to 16 for GCM mode; no limits for CCM mode; only for open_ssl_

encrypt()

For more information, you can refer to https://wiki.php.net/rfc/openssl_aead.

https://wiki.php.net/rfc/openssl_aead

Chapter 12

481

See also
For an excellent discussion on why the mcrypt extension is being deprecated in PHP 7.1,
please refer to the article at https://wiki.php.net/rfc/mcrypt-viking-funeral.
For a good description of block cipher, which forms the basis for the various cipher methods,
refer to the article present at https://en.wikipedia.org/wiki/Block_cipher. For
an excellent description of AES, refer to https://en.wikipedia.org/wiki/Advanced_
Encryption_Standard. A good article that describes encryption operation modes can be
seen at https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation.

For some of the newer modes, if the data to be encrypted is less than the block
size, openssl_decrypt() will return no value. If you pad the data to be
at least the block size, the problem goes away. Most of the modes implement
internal padding so this is not an issue. With some of the newer modes (that is,
xts) you might see this problem. Be sure to conduct tests on short strings of
data less than eight characters before putting your code into production.

https://wiki.php.net/rfc/mcrypt-viking-funeral
https://en.wikipedia.org/wiki/Block_cipher
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation

483

13
Best Practices, Testing,

and Debugging

In this chapter, we will cover the following topics:

ff Using Traits and Interfaces

ff Universal exception handler

ff Universal error handler

ff Writing a simple test

ff Writing a test suite

ff Generating fake test data

ff Customizing sessions using session_start parameters

Introduction
In this chapter, we will show you how traits and interfaces work together. Then, we turn our
attention to the design of a fallback mechanism that will catch errors and exceptions in
situations where you were not able (or forgot) to define specific try/catch blocks. We will
then venture into the world of unit testing, showing you first how to write simple tests, and
then how to group those tests together into test suites. Next, we define a class that lets you
create any amount of generic test data. We close the chapter with a discussion of how to
easily manage sessions using new PHP 7 features.

Best Practices, Testing, and Debugging

484

Using Traits and Interfaces
It is considered a best practice to make use of interfaces as a means of establishing the
classification of a set of classes, and to guarantee the existence of certain methods. Traits
and Interfaces often work together, and are an important aspect of implementation. Wherever
you have a frequently used Interface that defines a method where the code does not change
(such as a setter or getter), it is useful to also define a Trait that contains the actual code
implementation.

How to do it…
1.	 For this example, we will use ConnectionAwareInterface, first presented in

Chapter 4, Working with PHP Object-Oriented Programming. This interface defines a
setConnection() method that sets a $connection property. Two classes in the
Application\Generic namespace, CountryList and CustomerList, contain
redundant code, which matches the method defined in the interface.

2.	 Here is what CountryList looks like before the change:
class CountryList
{
 protected $connection;
 protected $key = 'iso3';
 protected $value = 'name';
 protected $table = 'iso_country_codes';

 public function setConnection(Connection $connection)
 {
 $this->connection = $connection;
 }
 public function list()
 {
 $list = [];
 $sql = sprintf('SELECT %s,%s FROM %s', $this->key,
 $this->value, $this->table);
 $stmt = $this->connection->pdo->query($sql);
 while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $list[$item[$this->key]] = $item[$this->value];
 }
 return $list;
 }

}

Chapter 13

485

3.	 We will now move list() into a trait called ListTrait:
trait ListTrait
{
 public function list()
 {
 $list = [];
 $sql = sprintf('SELECT %s,%s FROM %s',
 $this->key, $this->value, $this->table);
 $stmt = $this->connection->pdo->query($sql);
 while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $list[$item[$this->key]] = $item[$this->value];
 }
 return $list;
 }
}

4.	 We can then insert the code from ListTrait into a new class,
CountryListUsingTrait, as shown next:
class CountryListUsingTrait
{
 use ListTrait;
 protected $connection;
 protected $key = 'iso3';
 protected $value = 'name';
 protected $table = 'iso_country_codes';
 public function setConnection(Connection $connection)
 {
 $this->connection = $connection;
 }

}

5.	 Next, we observe that many classes need to set a connection instance. Again,
this calls for a trait. This time, however, we place the trait in the Application\
Database namespace. Here is the new trait:
namespace Application\Database;
trait ConnectionTrait
{
 protected $connection;
 public function setConnection(Connection $connection)
 {

Best Practices, Testing, and Debugging

486

 $this->connection = $connection;
 }
}

6.	 Traits are often used to avoid duplication of code. It is often the case that you also
need to identify the class that uses the trait. A good way to do this is to develop an
interface that matches the trait. In this example, we will define Application\
Database\ConnectionAwareInterface:
namespace Application\Database;
use Application\Database\Connection;
interface ConnectionAwareInterface
{
 public function setConnection(Connection $connection);
}

7.	 And here is the revised CountryListUsingTrait class. Note that as the
new trait is affected by its location in the namespace, we needed to add a
use statement at the top of the class. You will also note that we implement
ConnectionAwareInterface to identify the fact that this class requires the
method defined in the trait. Notice that we are taking advantage of the new PHP 7
group use syntax:

namespace Application\Generic;
use PDO;
use Application\Database\ {
Connection, ConnectionTrait, ConnectionAwareInterface
};
class CountryListUsingTrait implements ConnectionAwareInterface
{
 use ListTrait;
 use ConnectionTrait;

 protected $key = 'iso3';
 protected $value = 'name';
 protected $table = 'iso_country_codes';

}

Chapter 13

487

How it works…
First of all, make sure the classes developed in Chapter 4, Working with PHP Object-
Oriented Programming, have been created. These include the Application\Generic\
CountryList and Application\Generic\CustomerList classes discussed in Chapter
4, Working with PHP Object-Oriented Programming, in the recipe Using interfaces. Save each
class in a new file in the Application\Generic folder as CountryListUsingTrait.php
and CustomerListUsingTrait.php. Be sure to change the class names to match the new
names of the files!

As discussed in step 3, remove the list() method from both CountryListUsingTrait.
php and CustomerListUsingTrait.php. Add use ListTrait; in place of the method
removed. Place the removed code into a separate file, in the same folder, called ListTrait.
php.

You will also notice further duplication of code between the two list classes, in this case the
setConnection() method. This calls for another trait!

Cut the setConnection() method out of both CountryListUsingTrait.
php and CustomerListUsingTrait.php list classes, and place the removed code
into a separate file called ConnectionTrait.php. As this trait is logically related to
ConnectionAwareInterface and Connection, it makes sense to place the file in the
Application\Database folder, and to specify its namespace accordingly.

Finally, define Application\Database\ConnectionAwareInterface as discussed in
step 6. Here is the final Application\Generic\CustomerListUsingTrait class after
all changes:

<?php
namespace Application\Generic;
use PDO;
use Application\Database\Connection;
use Application\Database\ConnectionTrait;
use Application\Database\ConnectionAwareInterface;
class CustomerListUsingTrait implements ConnectionAwareInterface
{

 use ListTrait;
 use ConnectionTrait;

 protected $key = 'id';
 protected $value = 'name';
 protected $table = 'customer';
}

Best Practices, Testing, and Debugging

488

You can now copy the chap_04_oop_simple_interfaces_example.php file
mentioned in Chapter 4, Working with PHP Object-Oriented Programming, to a new file
called chap_13_trait_and_interface.php. Change the reference from CountryList
to CountryListUsingTrait. Likewise, change the reference from CustomerList to
CustomerListUsingTrait. Otherwise, the code can remain the same:

<?php
define('DB_CONFIG_FILE', '/../config/db.config.php');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
$params = include __DIR__ . DB_CONFIG_FILE;
try {
 $list = Application\Generic\ListFactory::factory(
 new Application\Generic\CountryListUsingTrait(), $params);
 echo 'Country List' . PHP_EOL;
 foreach ($list->list() as $item) echo $item . ' ';
 $list = Application\Generic\ListFactory::factory(
 new Application\Generic\CustomerListUsingTrait(),
 $params);
 echo 'Customer List' . PHP_EOL;
 foreach ($list->list() as $item) echo $item . ' ';

} catch (Throwable $e) {
 echo $e->getMessage();
}

The output will be exactly as described in the Using interfaces recipe of Chapter 4, Working
with Object-Oriented Programming. You can see the country list portion of the output in the
following screenshot:

Chapter 13

489

The next image displays the customer list portion of the output:

Universal exception handler
Exceptions are especially useful when used in conjunction with code in a try/catch block.
Using this construct, however, can be awkward in some situations, making code virtually
unreadable. Another consideration is that many classes end up throwing exceptions that you
have not anticipated. In such cases, it would be highly desirable to have some sort of fallback
exception handler.

How to do it…
1.	 First, we define a generic exception handling class, Application\Error\

Handler:
namespace Application\Error;
class Handler
{
 // code goes here
}

2.	 We define properties that represents a log file. If the name is not supplied, it is
named after the year, month, and day. In the constructor, we use set_exception_
handler() to assign the exceptionHandler() method (in this class) as the
fallback handler:
protected $logFile;
public function __construct(
 $logFileDir = NULL, $logFile = NULL)

Best Practices, Testing, and Debugging

490

{
 $logFile = $logFile ?? date('Ymd') . '.log';
 $logFileDir = $logFileDir ?? __DIR__;
 $this->logFile = $logFileDir . '/' . $logFile;
 $this->logFile = str_replace('//', '/', $this-
 >logFile);
 set_exception_handler([$this,'exceptionHandler']);
}

3.	 Next, we define the exceptionHandler() method, which takes an Exception
object as an argument. We record the date and time, the class name of the
exception, and its message in the log file:
public function exceptionHandler($ex)
{
 $message = sprintf('%19s : %20s : %s' . PHP_EOL,
 date('Y-m-d H:i:s'), get_class($ex), $ex->getMessage());
 file_put_contents($this->logFile, $message, FILE_APPEND);
}

4.	 If we specifically put a try/catch block in our code, this will override our universal
exception handler. If, on the other hand, we do not use try/catch and an exception is
thrown, the universal exception handler will come into play.

Best practice
You should always use try/catch to trap exceptions and possibly continue
in your application. The exception handler described here is only designed
to allow your application to end "gracefully" in situations where exceptions
thrown have not been caught.

How it works…
First, place the code shown in the preceding recipe into a Handler.php file in the
Application\Error folder. Next, define a test class that will throw an exception. For the
purposes of illustration, create an Application\Error\ThrowsException class that
will throw an exception. As an example, set up a PDO instance with the error mode set to
PDO::ERRMODE_EXCEPTION. You then craft an SQL statement that is guaranteed to fail:

namespace Application\Error;
use PDO;
class ThrowsException
{
 protected $result;
 public function __construct(array $config)
 {
 $dsn = $config['driver'] . ':';

Chapter 13

491

 unset($config['driver']);
 foreach ($config as $key => $value) {
 $dsn .= $key . '=' . $value . ';';
 }
 $pdo = new PDO(
 $dsn,
 $config['user'],
 $config['password'],
 [PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION]);
 $stmt = $pdo->query('This Is Not SQL');
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $this->result[] = $row;
 }
 }
}

Next, define a calling program called chap_13_exception_handler.php that sets up
autoloading, uses the appropriate classes:

<?php
define('DB_CONFIG_FILE', __DIR__ . '/../config/db.config.php');
$config = include DB_CONFIG_FILE;
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Error\ { Handler, ThrowsException };

At this point, if you create a ThrowsException instance without implementing the universal
handler, a Fatal Error is generated as an exception has been thrown but not caught:

$throws1 = new ThrowsException($config);

Best Practices, Testing, and Debugging

492

If, on the other hand, you use a try/catch block, the exception will be caught and your
application is allowed to continue, if it is stable enough:

try {
 $throws1 = new ThrowsException($config);
} catch (Exception $e) {
 echo 'Exception Caught: ' . get_class($e) . ':' . $e->getMessage()
 . PHP_EOL;
}
echo 'Application Continues ...' . PHP_EOL;

You will observe the following output:

To demonstrate use of the exception handler, define a Handler instance, passing a
parameter that represents the directory to contain log files, before the try/catch block.
After try/catch, outside the block, create another instance of ThrowsException. When
you run this sample program, you will notice that the first exception is caught inside the try/
catch block, and the second exception is caught by the handler. You will also note that after
the handler, the application ends:

$handler = new Handler(__DIR__ . '/logs');
try {
 $throws1 = new ThrowsException($config);
} catch (Exception $e) {
 echo 'Exception Caught: ' . get_class($e) . ':'
 . $e->getMessage() . PHP_EOL;
}
$throws1 = new ThrowsException($config);
echo 'Application Continues ...' . PHP_EOL;

Chapter 13

493

Here is the output from the completed example program, along with the contents of the
log file:

See also
ff It might be a good idea to review the documentation on the set_exception_

handler() function. Have a look, especially, at the comment (posted 7 years ago,
but still pertinent) by Anonymous that clarifies how this function works: http://
php.net/manual/en/function.set-exception-handler.php.

Universal error handler
The process of developing a universal error handler is quite similar to the preceding recipe.
There are certain differences, however. First of all, in PHP 7, some errors are thrown and can
be caught, whereas others simply stop your application dead in its tracks. To further confuse
matters, some errors are treated like exceptions, whereas others are derived from the new
PHP 7 Error class. Fortunately for us, in PHP 7, both Error and Exception implement a
new interface called Throwable. Accordingly, if you are not sure whether your code will throw
an Exception or an Error, simply catch an instance of Throwable and you'll catch both.

How to do it…
1.	 Modify the Application\Error\Handler class defined in the preceding recipe.

In the constructor, set a new errorHandler() method as the default error handler:
public function __construct($logFileDir = NULL, $logFile = NULL)
{
 $logFile = $logFile ?? date('Ymd') . '.log';
 $logFileDir = $logFileDir ?? __DIR__;
 $this->logFile = $logFileDir . '/' . $logFile;
 $this->logFile = str_replace('//', '/', $this->logFile);
 set_exception_handler([$this,'exceptionHandler']);
 set_error_handler([$this, 'errorHandler']);
}

http://php.net/manual/en/function.set-exception-handler.php
http://php.net/manual/en/function.set-exception-handler.php

Best Practices, Testing, and Debugging

494

2.	 We then define the new method, using the documented parameters. As with our
exception handler, we log information to a log file:
public function errorHandler($errno, $errstr, $errfile, $errline)
{
 $message = sprintf('ERROR: %s : %d : %s : %s : %s' . PHP_EOL,
 date('Y-m-d H:i:s'), $errno, $errstr, $errfile, $errline);
 file_put_contents($this->logFile, $message, FILE_APPEND);
}

3.	 Also, just to be able to distinguish errors from exceptions, add EXCEPTION to the
message sent to the log file in the exceptionHandler() method:

public function exceptionHandler($ex)
{
 $message = sprintf('EXCEPTION: %19s : %20s : %s' . PHP_EOL,
 date('Y-m-d H:i:s'), get_class($ex), $ex->getMessage());
 file_put_contents($this->logFile, $message, FILE_APPEND);
}

How it works…
First, make the changes to Application\Error\Handler as defined previously.
Next, create a class that throws an error that, for this illustration, could be defined as
Application\Error\ThrowsError. For example, you could have a method that attempts
a divide by zero operation, and another that attempts to parse non-PHP code using eval():

<?php
namespace Application\Error;
class ThrowsError
{
 const NOT_PARSE = 'this will not parse';
 public function divideByZero()
 {
 $this->zero = 1 / 0;
 }
 public function willNotParse()
 {
 eval(self::NOT_PARSE);
 }
}

You can then define a calling program called chap_13_error_throwable.php that sets up
autoloading, uses the appropriate classes, and creates an instance of ThrowsError:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');

Chapter 13

495

use Application\Error\ { Handler, ThrowsError };
$error = new ThrowsError();

If you then call the two methods, without a try/catch block and without defining the universal
error handler, the first method generates a Warning, whereas the second throws a
ParseError:

$error->divideByZero();
$error->willNotParse();
echo 'Application continues ... ' . PHP_EOL;

Because this is an error, program execution stops, and you will not see Application
continues ...:

If you wrap the method calls in try/catch blocks and catch Throwable, the code execution
continues:

try {
 $error->divideByZero();
} catch (Throwable $e) {
 echo 'Error Caught: ' . get_class($e) . ':'
 . $e->getMessage() . PHP_EOL;
}
try {
 $error->willNotParse();
} catch (Throwable $e) {
 echo 'Error Caught: ' . get_class($e) . ':'
 . $e->getMessage() . PHP_EOL;
}
echo 'Application continues ... ' . PHP_EOL;

Best Practices, Testing, and Debugging

496

From the following output, you will also note that the program exits with code 0, which tells
us all is OK:

Finally, after the try/catch blocks, run the errors again, moving the echo statement to
the end. You will see in the output that the errors were caught, but in the log file, notice that
DivisionByZeroError is caught by the exception handler, whereas the ParseError is
caught by the error hander:

$handler = new Handler(__DIR__ . '/logs');
$error->divideByZero();
$error->willNotParse();
echo 'Application continues ... ' . PHP_EOL;

See also
ff PHP 7.1 allows you to specify more than one class in the catch () clause. So,

instead of a single Throwable you could say catch (Exception | Error $e) {
xxx }

Chapter 13

497

Writing a simple test
The primary means of testing PHP code is to use PHPUnit, which is based on a methodology
called Unit Testing. The philosophy behind unit testing is quite simple: you break down your
code into the smallest possible logical units. You then test each unit in isolation to confirm
that it performs as expected. These expectations are codified into a series of assertions.
If all assertions return TRUE, then the unit has passed the test.

In the case of procedural PHP, a unit is a function. For OOP PHP,
the unit is a method within a class.

How to do it…
1.	 The first order of business is to either install PHPUnit directly onto your development

server, or download the source code, which is available in the form of a single
phar (PHP archive) file. A quick visit to the official website for PHPUnit (https://
phpunit.de/) lets us download right from the main page.

2.	 It is a best practice, however, to use a package manager to both install and maintain
PHPUnit. For this purpose, we will use a package management program called
Composer. To install Composer, visit the main website, https://getcomposer.
org/, and follow the instructions on the download page. The current procedure, at
the time of writing, is as follows. Note that you need to substitute the hash of the
current version in place of <hash>:
php -r "copy('https://getcomposer.org/installer',
 'composer-setup.php');"
php -r "if (hash_file('SHA384', 'composer-setup.php')
 === '<hash>') {
 echo 'Installer verified';
} else {
 echo 'Installer corrupt'; unlink('composer-setup.php');
} echo PHP_EOL;"
php composer-setup.php
php -r "unlink('composer-setup.php');"

Best practice
The advantage of using a package management program such as
Composer is that it will not only install, but can also be used to update
any external software (such as PHPUnit) used by your application.

https://phpunit.de/
https://phpunit.de/
https://getcomposer.org/
https://getcomposer.org/

Best Practices, Testing, and Debugging

498

3.	 Next, we use Composer to install PHPUnit. This is accomplished by creating a
composer.json file that contains a series of directives outlining project parameters
and dependencies. A full description of these directives is beyond the scope of this
book; however, for the purposes of this recipe, we create a minimal set of directives
using the key parameter require. You will also note that the contents of the file are
in JavaScript Object Notation (JSON) format:
{
 "require-dev": {
 "phpunit/phpunit": "*"
 }
}

4.	 To perform the installation from the command line, we run the following command.
The output is shown just after:
php composer.phar install

5.	 PHPUnit and its dependencies are placed in a vendor folder that Composer will
create if it does not already exist. The primary command to invoke PHPUnit is then
symbolically linked into the vendor/bin folder. If you place this folder in your PATH,
all you need do is to run this command, which checks the version and incidentally
confirms the installation:

phpunit --version

Chapter 13

499

Running simple tests
1.	 For the purposes of this illustration, let's assume we have a chap_13_unit_test_

simple.php file that contains the add() function:
<?php
function add($a = NULL, $b = NULL)
{
 return $a + $b;
}

2.	 Tests are then written as classes that extend PHPUnit\Framework\TestCase. If
you are testing a library of functions, at the beginning of the test class, include the file
that contains function definitions. You would then write methods that start with the
word test, usually followed by the name of the function you are testing, and possibly
some additional CamelCase words to further describe the test. For the purposes of
this recipe, we will define a SimpleTest test class:
<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/chap_13_unit_test_simple.php';
class SimpleTest extends TestCase
{
 // testXXX() methods go here
}

3.	 Assertions form the heart of any set of tests. The See also section gives you
the documentation reference for the complete list of assertions. An assertion is a
PHPUnit method that compares a known value against a value produced by that
which you wish to test. An example is assertEquals(), which checks to see
whether the first argument equals the second. The following example tests a
method called add() and confirms 2 is the return value for add(1,1):
public function testAdd()
{
 $this->assertEquals(2, add(1,1));
}

4.	 You can also test to see whether something is not true. This example asserts that 1 +
1 does not equal 3:
$this->assertNotEquals(3, add(1,1));

5.	 An assertion that is extremely useful when used to test a string is assertRegExp().
Assume, for this illustration, that we are testing a function that produces an HTML
table out of a multidimensional array:
function table(array $a)
{
 $table = '<table>';

Best Practices, Testing, and Debugging

500

 foreach ($a as $row) {
 $table .= '<tr><td>';
 $table .= implode('</td><td>', $row);
 $table .= '</td></tr>';
 }
 $table .= '</table>';
 return $table;
}

6.	 We can construct a simple test that confirms that the output contains <table>,
one or more characters, followed by </table>. Further, we wish to confirm that
a <td>B</td> element exists. When writing the test, we build a test array that
consists of three sub-arrays containing the letters A–C, D—F, and G—I. We then pass
the test array to the function, and run assertions against the result:
public function testTable()
{
 $a = [range('A', 'C'),range('D', 'F'),range('G','I')];
 $table = table($a);
 $this->assertRegExp('!^<table>.+</table>$!', $table);
 $this->assertRegExp('!<td>B</td>!', $table);
}

7.	 To test a class, instead of including a library of functions, simply include the file that
defines the class to be tested. For the sake of illustration, let's take the library of
functions shown previously and move them into a Demo class:
<?php
class Demo
{
 public function add($a, $b)
 {
 return $a + $b;
 }

 public function sub($a, $b)
 {
 return $a - $b;
 }
 // etc.
}

Chapter 13

501

8.	 In our SimpleClassTest test class, instead of including the library file, we include
the file that represents the Demo class. We need an instance of Demo in order to run
tests. For this purpose, we use a specially designed setup() method, which is run
before each test. Also, you will note a teardown() method, which is run immediately
after each test:

<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/Demo.php';
class SimpleClassTest extends TestCase
{
 protected $demo;
 public function setup()
 {
 $this->demo = new Demo();
 }
 public function teardown()
 {
 unset($this->demo);
 }
 public function testAdd()
 {
 $this->assertEquals(2, $this->demo->add(1,1));
 }
 public function testSub()
 {
 $this->assertEquals(0, $this->demo->sub(1,1));
 }
 // etc.
}

The reason why setup() and teardown() are run before and after
each test is to ensure a fresh test environment. That way, the results of
one test will not influence the results of another test.

Best Practices, Testing, and Debugging

502

Testing database Model classes
1.	 When testing a class, such as a Model class, that has database access, other

considerations come into play. The main consideration is that you should run tests
against a test database, not the real database used in production. A final point is that
by using a test database, you can populate it in advance with appropriate, controlled
data. setup() and teardown() could also be used to add or remove test data.

2.	 As an example of a class that uses the database, we will define a class VisitorOps.
The new class will include methods to add, remove, and find visitors. Note that we've
also added a method to return the latest SQL statement executed:
<?php
require __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
class VisitorOps
{

const TABLE_NAME = 'visitors';
protected $connection;
protected $sql;

public function __construct(array $config)
{
 $this->connection = new Connection($config);
}

public function getSql()
{
 return $this->sql;
}

public function findAll()
{
 $sql = 'SELECT * FROM ' . self::TABLE_NAME;
 $stmt = $this->runSql($sql);
 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
 yield $row;
 }
}

public function findById($id)
{
 $sql = 'SELECT * FROM ' . self::TABLE_NAME;
 $sql .= ' WHERE id = ?';
 $stmt = $this->runSql($sql, [$id]);

Chapter 13

503

 return $stmt->fetch(PDO::FETCH_ASSOC);
}

public function removeById($id)
{
 $sql = 'DELETE FROM ' . self::TABLE_NAME;
 $sql .= ' WHERE id = ?';
 return $this->runSql($sql, [$id]);
}

public function addVisitor($data)
{
 $sql = 'INSERT INTO ' . self::TABLE_NAME;
 $sql .= ' (' . implode(',',array_keys($data)) . ') ';
 $sql .= ' VALUES ';
 $sql .= ' (:' . implode(',:',array_keys($data)) . ') ';
 $this->runSql($sql, $data);
 return $this->connection->pdo->lastInsertId();
}

public function runSql($sql, $params = NULL)
{
 $this->sql = $sql;
 try {
 $stmt = $this->connection->pdo->prepare($sql);
 $result = $stmt->execute($params);
 } catch (Throwable $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 return FALSE;
 }
 return $stmt;
}
}

3.	 For tests that involve a database, it is recommended that you use a test database
instead of the live production database. Accordingly, you will need an extra set
of database connection parameters that can be used to establish a database
connection in the setup() method.

4.	 It's possible that you wish to establish a consistent block of sample data. This could
be inserted into the test database in the setup() method.

5.	 Finally, you may wish to reset the test database after each test, which is
accomplished in the teardown() method.

Best Practices, Testing, and Debugging

504

Using mock classes
1.	 In some cases, the test will access complex components that require external

resources. An example is a service class that needs access to a database. It is a best
practice to minimize database access in a test suite. Another consideration is that we
are not testing database access; we are only testing the functionality of one specific
class. Accordingly, it is sometimes necessary to define mock classes that mimic the
behavior of the their parent class, but that restrict access to external resources.

Best practice
Limit actual database access in your tests to the Model (or equivalent)
classes. Otherwise, the time it takes to run the entire set of tests could
become excessive.

2.	 In this case, for illustration, define a service class, VisitorService, which makes
use of the VisitorOps class discussed earlier:
<?php
require_once __DIR__ . '/VisitorOps.php';
require_once __DIR__ . '/../Application/Database/Connection.php';
use Application\Database\Connection;
class VisitorService
{
 protected $visitorOps;
 public function __construct(array $config)
 {
 $this->visitorOps = new VisitorOps($config);
 }
 public function showAllVisitors()
 {
 $table = '<table>';
 foreach ($this->visitorOps->findAll() as $row) {
 $table .= '<tr><td>';
 $table .= implode('</td><td>', $row);
 $table .= '</td></tr>';
 }
 $table .= '</table>';
 return $table;
 }

3.	 For test purposes, we add a getter and setter for the $visitorOps property.
This allows us to insert a mock class in place of the real VisitorOps class:
public function getVisitorOps()
{
 return $this->visitorOps;

Chapter 13

505

}

public function setVisitorOps(VisitorOps $visitorOps)
{
 $this->visitorOps = $visitorOps;
}
} // closing brace for VisitorService

4.	 Next, we define a VisitorOpsMock mock class that mimics the functionality of its
parent class. Class constants and properties are inherited. We then add mock test
data, and a getter in case we need access to the test data later:
<?php
require_once __DIR__ . '/VisitorOps.php';
class VisitorOpsMock extends VisitorOps
{
 protected $testData;
 public function __construct()
 {
 $data = array();
 for ($x = 1; $x <= 3; $x++) {
 $data[$x]['id'] = $x;
 $data[$x]['email'] = $x . 'test@unlikelysource.com';
 $data[$x]['visit_date'] =
 '2000-0' . $x . '-0' . $x . ' 00:00:00';
 $data[$x]['comments'] = 'TEST ' . $x;
 $data[$x]['name'] = 'TEST ' . $x;
 }
 $this->testData = $data;
 }
 public function getTestData()
 {
 return $this->testData;
 }

5.	 Next, we override findAll() to return test data using yield, just as in the parent
class. Note that we still build the SQL string, as this is what the parent class does:
public function findAll()
{
 $sql = 'SELECT * FROM ' . self::TABLE_NAME;
 foreach ($this->testData as $row) {
 yield $row;
 }
}

Best Practices, Testing, and Debugging

506

6.	 To mock findById() we simply return that array key from $this->testData.
For removeById(), we unset the array key supplied as a parameter from
$this->testData:
public function findById($id)
{
 $sql = 'SELECT * FROM ' . self::TABLE_NAME;
 $sql .= ' WHERE id = ?';
 return $this->testData[$id] ?? FALSE;
}
public function removeById($id)
{
 $sql = 'DELETE FROM ' . self::TABLE_NAME;
 $sql .= ' WHERE id = ?';
 if (empty($this->testData[$id])) {
 return 0;
 } else {
 unset($this->testData[$id]);
 return 1;
 }
}

7.	 Adding data is slightly more complicated in that we need to emulate the fact that the
id parameter might not be supplied, as the database would normally auto-generate
this for us. To get around this, we check for the id parameter. If not set, we find the
largest array key and increment:

public function addVisitor($data)
{
 $sql = 'INSERT INTO ' . self::TABLE_NAME;
 $sql .= ' (' . implode(',',array_keys($data)) . ') ';
 $sql .= ' VALUES ';
 $sql .= ' (:' . implode(',:',array_keys($data)) . ') ';
 if (!empty($data['id'])) {
 $id = $data['id'];
 } else {
 $keys = array_keys($this->testData);
 sort($keys);
 $id = end($keys) + 1;
 $data['id'] = $id;
 }
 $this->testData[$id] = $data;
 return 1;
 }

} // ending brace for the class VisitorOpsMock

Chapter 13

507

Using anonymous classes as mock objects
1.	 A nice variation on mock objects involves the use of the new PHP 7 anonymous class

in place of creating a formal class that defines mock functionality. The advantage
of using an anonymous class is that you can extend an existing class, which makes
the object appear legitimate. This approach is especially useful if you only need to
override one or two methods.

2.	 For this illustration, we will modify VisitorServiceTest.php presented
previously, calling it VisitorServiceTestAnonClass.php:
<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/VisitorService.php';
require_once __DIR__ . '/VisitorOps.php';
class VisitorServiceTestAnonClass extends TestCase
{
 protected $visitorService;
 protected $dbConfig = [
 'driver' => 'mysql',
 'host' => 'localhost',
 'dbname' => 'php7cookbook_test',
 'user' => 'cook',
 'password' => 'book',
 'errmode' => PDO::ERRMODE_EXCEPTION,
];
 protected $testData;

3.	 You will notice that in setup(), we define an anonymous class that extends
VisitorOps. We only need to override the findAll() method:
public function setup()
{
 $data = array();
 for ($x = 1; $x <= 3; $x++) {
 $data[$x]['id'] = $x;
 $data[$x]['email'] = $x . 'test@unlikelysource.com';
 $data[$x]['visit_date'] =
 '2000-0' . $x . '-0' . $x . ' 00:00:00';
 $data[$x]['comments'] = 'TEST ' . $x;
 $data[$x]['name'] = 'TEST ' . $x;
 }
 $this->testData = $data;
 $this->visitorService =
 new VisitorService($this->dbConfig);
 $opsMock =
 new class ($this->testData) extends VisitorOps {

Best Practices, Testing, and Debugging

508

 protected $testData;
 public function __construct($testData)
 {
 $this->testData = $testData;
 }
 public function findAll()
 {
 return $this->testData;
 }
 };
 $this->visitorService->setVisitorOps($opsMock);
}

4.	 Note that in testShowAllVisitors(), when $this->visitorService
->showAllVisitors() is executed, the anonymous class is called by the visitor
service, which in turn calls the overridden findAll():

public function teardown()
{
 unset($this->visitorService);
}
public function testShowAllVisitors()
{
 $result = $this->visitorService->showAllVisitors();
 $this->assertRegExp('!^<table>.+</table>$!', $result);
 foreach ($this->testData as $key => $value) {
 $dataWeWant = '!<td>' . $key . '</td>!';
 $this->assertRegExp($dataWeWant, $result);
 }
}
}

Using Mock Builder
1.	 Another technique is to use getMockBuilder(). Although this approach does

not allow a great deal of finite control over the mock object produced, it's extremely
useful in situations where you only need to confirm that an object of a certain class
is returned, and when a specified method is run, this method returns some expected
value.

2.	 In the following example, we copied VisitorServiceTestAnonClass; the only
difference is in how an instance of VisitorOps is supplied in setup(), in this
case, using getMockBuilder(). Note that although we did not use with() in this
example, it is used to feed controlled parameters to the mocked method:

<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/VisitorService.php';

Chapter 13

509

require_once __DIR__ . '/VisitorOps.php';
class VisitorServiceTestAnonMockBuilder extends TestCase
{
 // code is identical to VisitorServiceTestAnon
 public function setup()
 {
 $data = array();
 for ($x = 1; $x <= 3; $x++) {
 $data[$x]['id'] = $x;
 $data[$x]['email'] = $x . 'test@unlikelysource.com';
 $data[$x]['visit_date'] =
 '2000-0' . $x . '-0' . $x . ' 00:00:00';
 $data[$x]['comments'] = 'TEST ' . $x;
 $data[$x]['name'] = 'TEST ' . $x;
 }
 $this->testData = $data;
 $this->visitorService =
 new VisitorService($this->dbConfig);
 $opsMock = $this->getMockBuilder(VisitorOps::class)
 ->setMethods(['findAll'])
 ->disableOriginalConstructor()
 ->getMock();
 $opsMock->expects($this->once())
 ->method('findAll')
 ->with()
 ->will($this->returnValue($this->testData));
 $this->visitorService
 ->setVisitorOps($opsMock);
 }
 // remaining code is the same
}

We have shown how to create simple one-off tests. In most cases,
however, you will have many classes that need to be tested, preferably
all at once. This is possible by developing a test suite, discussed in
more detail in the next recipe.

How it works…
First, you need to install PHPUnit, as discussed in steps 1 to 5. Be sure to include vendor/
bin in your PATH so that you can run PHPUnit from the command line.

Best Practices, Testing, and Debugging

510

Running simple tests
Next, define a chap_13_unit_test_simple.php program file with a series of simple
functions, such as add(), sub() and so on, as discussed in step 1. You can then define a
simple test class contained in SimpleTest.php as mentioned in steps 2 and 3.

Assuming phpunit is in your PATH, from a terminal window, change to the directory
containing the code developed for this recipe, and run the following command:

phpunit SimpleTest SimpleTest.php

You should see the following output:

Make a change in SimpleTest.php so that the test will fail (step 4):

public function testDiv()
{
 $this->assertEquals(2, div(4, 2));
 $this->assertEquals(99, div(4, 0));
}

Here is the revised output:

Chapter 13

511

Next, add the table() function to chap_13_unit_test_simple.php (step 5), and
testTable() to SimpleTest.php (step 6). Re-run the unit test and observe the results.

To test a class, copy the functions developed in chap_13_unit_test_simple.php to a
Demo class (step 7). After making the modifications to SimpleTest.php suggested in step 8,
re-run the simple test and observe the results.

Testing database model classes
First, create an example class to be tested, VisitorOps, shown in step 2 in this subsection.
You can now define a class we will call SimpleDatabaseTest to test VisitorOps. First
of all, use require_once to load the class to test. (We will discuss how to incorporate
autoloading in the next recipe!) Then define key properties, including test database
configuration and test data. You could use php7cookbook_test as the test database:

<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/VisitorOps.php';
class SimpleDatabaseTest extends TestCase
{
 protected $visitorOps;
 protected $dbConfig = [
 'driver' => 'mysql',
 'host' => 'localhost',
 'dbname' => 'php7cookbook_test',
 'user' => 'cook',
 'password' => 'book',
 'errmode' => PDO::ERRMODE_EXCEPTION,
];
 protected $testData = [
 'id' => 1,
 'email' => 'test@unlikelysource.com',
 'visit_date' => '2000-01-01 00:00:00',
 'comments' => 'TEST',
 'name' => 'TEST'
];
}

Next, define setup(), which inserts the test data, and confirms that the last SQL statement
was INSERT. You should also check to see whether the return value was positive:

public function setup()
{
 $this->visitorOps = new VisitorOps($this->dbConfig);
 $this->visitorOps->addVisitor($this->testData);
 $this->assertRegExp('/INSERT/', $this->visitorOps->getSql());
}

Best Practices, Testing, and Debugging

512

After that, define teardown(), which removes the test data and confirms that the query for
id = 1 comes back as FALSE:

public function teardown()
{
 $result = $this->visitorOps->removeById(1);
 $result = $this->visitorOps->findById(1);
 $this->assertEquals(FALSE, $result);
 unset($this->visitorOps);
}

The first test is for findAll(). First, confirm the data type of the result. You could take the
topmost element using current(). We confirm there are five elements, that one of them is
name, and that the value is the same as that in the test data:

public function testFindAll()
{
 $result = $this->visitorOps->findAll();
 $this->assertInstanceOf(Generator::class, $result);
 $top = $result->current();
 $this->assertCount(5, $top);
 $this->assertArrayHasKey('name', $top);
 $this->assertEquals($this->testData['name'], $top['name']);
}

The next test is for findById(). It is almost identical to testFindAll():

public function testFindById()
{
 $result = $this->visitorOps->findById(1);
 $this->assertCount(5, $result);
 $this->assertArrayHasKey('name', $result);
 $this->assertEquals($this->testData['name'], $result['name']);
}

You do not need to bother with a test for removeById() as this is already done in
teardown(). Likewise, there is no need to test runSql() as this is done as part of
the other tests.

Using mock classes
First, define a VisitorService service class as described in steps 2 and 3 in this
subsection. Next, define a VisitorOpsMock mock class, which is discussed in steps 4 to 7.

Chapter 13

513

You are now in a position to develop a test, VisitorServiceTest, for the service class.
Note that you need provide your own database configuration as it is a best practice to use a
test database instead of the production version:

<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/VisitorService.php';
require_once __DIR__ . '/VisitorOpsMock.php';

class VisitorServiceTest extends TestCase
{
 protected $visitorService;
 protected $dbConfig = [
 'driver' => 'mysql',
 'host' => 'localhost',
 'dbname' => 'php7cookbook_test',
 'user' => 'cook',
 'password' => 'book',
 'errmode' => PDO::ERRMODE_EXCEPTION,
];
}

In setup(), create an instance of the service, and insert VisitorOpsMock in place of the
original class:

public function setup()
{
 $this->visitorService = new VisitorService($this->dbConfig);
 $this->visitorService->setVisitorOps(new VisitorOpsMock());
}
public function teardown()
{
 unset($this->visitorService);
}

In our test, which produces an HTML table from the list of visitors, you can then look for
certain elements, knowing what to expect in advance as you have control over the test data:

public function testShowAllVisitors()
{
 $result = $this->visitorService->showAllVisitors();
 $this->assertRegExp('!^<table>.+</table>$!', $result);
 $testData = $this->visitorService->getVisitorOps()->getTestData();

Best Practices, Testing, and Debugging

514

 foreach ($testData as $key => $value) {
 $dataWeWant = '!<td>' . $key . '</td>!';
 $this->assertRegExp($dataWeWant, $result);
 }
}
}

You might then wish to experiment with the variations suggested in the last two subsections,
Using Anonymous Classes as Mock Objects, and Using Mock Builder.

There's more…
Other assertions test operations on numbers, strings, arrays, objects, files, JSON, and XML,
as summarized in the following table:

Category Assertions
General assertEquals(), assertFalse(), assertEmpty(),

assertNull(), assertSame(), assertThat(), assertTrue()
Numeric assertGreaterThan(), assertGreaterThanOrEqual(),

assertLessThan(), assertLessThanOrEqual(),
assertNan(), assertInfinite()

String assertStringEndsWith(), assertStringEqualsFile(),
assertStringStartsWith(), assertRegExp(),
assertStringMatchesFormat(),
assertStringMatchesFormatFile()

Array/iterator assertArrayHasKey(), assertArraySubset(),
assertContains(), assertContainsOnly(),
assertContainsOnlyInstancesOf(), assertCount()

File assertFileEquals(), assertFileExists()
Objects assertClassHasAttribute(),

assertClassHasStaticAttribute(), assertInstanceOf(),
assertInternalType(), assertObjectHasAttribute()

JSON assertJsonFileEqualsJsonFile(),
assertJsonStringEqualsJsonFile(),
assertJsonStringEqualsJsonString()

XML assertEqualXMLStructure(),
assertXmlFileEqualsXmlFile(),
assertXmlStringEqualsXmlFile(),
assertXmlStringEqualsXmlString()

Chapter 13

515

See also…
ff For a good discussion on unit testing, have a look here: https://en.wikipedia.

org/wiki/Unit_testing.

ff For more information on composer.json file directives, see https://
getcomposer.org/doc/04-schema.md.

ff For a complete list of assertions, have a look at this PHPUnit documentation
page:https://phpunit.de/manual/current/en/phpunit-book.
html#appendixes.assertions.

ff The PHPUnit documentation also goes into using getMockBuilder() in detail here:
https://phpunit.de/manual/current/en/phpunit-book.html#test-
doubles.mock-objects

Writing a test suite
You may have noticed after having read through the previous recipe that it can quickly become
tedious to have to manually run phpunit and specify test classes and PHP filenames. This
is especially true when dealing with applications that employ dozens or even hundreds of
classes and files. The PHPUnit project has a built-in capability to handle running multiple tests
with a single command. Such a set of tests is referred to as a test suite.

How to do it…
1.	 At its simplest, all you need to do is to move all the tests into a single folder:

mkdir tests

cp *Test.php tests

2.	 You'll need to adjust commands that include or require external files to account for
the new location. The example shown (SimpleTest) was developed in the preceding
recipe:
<?php
use PHPUnit\Framework\TestCase;
require_once __DIR__ . '/../chap_13_unit_test_simple.php';

class SimpleTest extends TestCase
{
 // etc.

3.	 You can then simply run phpunit with the directory path as an argument. PHPUnit
will then automatically run all tests in that folder. In this example, we assume there is
a tests subdirectory:
phpunit tests

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing
https://getcomposer.org/doc/04-schema.md
https://getcomposer.org/doc/04-schema.md
page:https://phpunit.de/manual/current/en/phpunit-book.html#appendixes.assertions
page:https://phpunit.de/manual/current/en/phpunit-book.html#appendixes.assertions
https://phpunit.de/manual/current/en/phpunit-book.html#test-doubles.mock-objects
https://phpunit.de/manual/current/en/phpunit-book.html#test-doubles.mock-objects

Best Practices, Testing, and Debugging

516

4.	 You can use the --bootstrap option to specify a file that is executed prior to
running the tests. A typical use for this option is to initiate autoloading:
phpunit --boostrap tests_with_autoload/bootstrap.php tests

5.	 Here is the sample bootstrap.php file that implements autoloading:
<?php
require __DIR__ . '/../../Application/Autoload/Loader.php';
Application\Autoload\Loader::init([__DIR__]);

6.	 Another possibility is to define one or more sets of tests using an XML configuration
file. Here is an example that runs only the Simple* tests:
<phpunit>
 <testsuites>
 <testsuite name="simple">
 <file>SimpleTest.php</file>
 <file>SimpleDbTest.php</file>
 <file>SimpleClassTest.php</file>
 </testsuite>
 </testsuites>
</phpunit>

7.	 Here is another example that runs a test based on a directory and also specifies a
bootstrap file:

<phpunit bootstrap="bootstrap.php">
 <testsuites>
 <testsuite name="visitor">
 <directory>Simple</directory>
 </testsuite>
 </testsuites>
</phpunit>

How it works…
Make sure all the tests discussed in the previous recipe, Writing a simple test, have been
defined. You can then create a tests folder and move or copy all the *Test.php files into
this folder. You'll then need to adjust the path in the require_once statements, as shown in
step 2.

In order to demonstrate how PHPUnit can run all tests in a folder, from the directory containing
the source code you defined for this chapter, run the following command:

phpunit tests

Chapter 13

517

You should see the following output:

To demonstrate the use of a autoloading via a bootstrap file, create a new tests_with_
autoload directory. In this folder, define a bootstrap.php file with the code shown in step
5. Create two directories in tests_with_autoload: Demo and Simple.

From the directory containing the source code for this chapter, copy the file (discussed in step
12 of the previous recipe) into tests_with_autoload/Demo/Demo.php. After the opening
<?php tag, add this line:

namespace Demo;

Next, copy the SimpleTest.php file to tests_with_autoload/Simple/ClassTest.
php. (Notice the filename change!). You will need to change the first few lines to the following:

<?php
namespace Simple;
use Demo\Demo;
use PHPUnit\Framework\TestCase;

class ClassTest extends TestCase
{
 protected $demo;
 public function setup()
 {
 $this->demo = new Demo();
 }
// etc.

After that, create a tests_with_autoload/phpunit.xml file that pulls everything
together:

<phpunit bootstrap="bootstrap.php">
 <testsuites>
 <testsuite name="visitor">
 <directory>Simple</directory>
 </testsuite>

Best Practices, Testing, and Debugging

518

 </testsuites>
</phpunit>

Finally, change to the directory that contains the code for this chapter. You can now run a unit
test that incorporates a bootstrap file, along with autoloading and namespaces, as follows:

phpunit -c tests_with_autoload/phpunit.xml

The output should appear as follows:

See also…
ff For more information on writing PHPUnit test suites, have a look at this

documentation page: https://phpunit.de/manual/current/en/phpunit-
book.html#organizing-tests.xml-configuration.

Generating fake test data
Part of the testing and debugging process involves incorporating realistic test data. In some
cases, especially when testing database access and producing benchmarks, large amounts of
test data are needed. One way in which this can be accomplished is to incorporate a process
of scraping data from websites, and then putting the data together in realistic, yet random,
combinations to be inserted into a database.

How to do it…
1.	 The first step is to determine what data is needed in order to test your application.

Another consideration is dose the website address an international audience, or will
the market be primarily from a single country?

2.	 In order to produce a consistent fake data tool, it's extremely important to move
the data from its source into a usable digital format. The first choice is a series of
database tables. Another, not as attractive, alternative is a CSV file.

https://phpunit.de/manual/current/en/phpunit-book.html#organizing-tests.xml-configuration
https://phpunit.de/manual/current/en/phpunit-book.html#organizing-tests.xml-configuration

Chapter 13

519

3.	 You may end up converting the data in stages. For example, you could pull data from
a web page that lists country codes and country names into a text file.

4.	 Since this list is short, it's easy to literally cut and paste this into a text file.

5.	 We can then do a search for " " and replace with "\n", which gives us this:

6.	 This can then be imported into a spreadsheet, which then lets you export to a CSV
file. From there, it's a simple matter to import it into a database. phpMyAdmin, for
example, has such a facility.

7.	 For the sake of this illustration, we will assume that we are generating data that will
end up in the prospects table. Here is the SQL statement used to create this table:
CREATE TABLE 'prospects' (
 'id' int(11) NOT NULL AUTO_INCREMENT,
 'first_name' varchar(128) NOT NULL,
 'last_name' varchar(128) NOT NULL,
 'address' varchar(256) DEFAULT NULL,

Best Practices, Testing, and Debugging

520

 'city' varchar(64) DEFAULT NULL,
 'state_province' varchar(32) DEFAULT NULL,
 'postal_code' char(16) NOT NULL,
 'phone' varchar(16) NOT NULL,
 'country' char(2) NOT NULL,
 'email' varchar(250) NOT NULL,
 'status' char(8) DEFAULT NULL,
 'budget' decimal(10,2) DEFAULT NULL,
 'last_updated' datetime DEFAULT NULL,
 PRIMARY KEY ('id'),
 UNIQUE KEY 'UNIQ_35730C06E7927C74' ('email')
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

8.	 Now it's time to create a class that is capable of generating fake data. We will then
create methods to generate data for each of the fields shown above, except for id,
which is auto-generated:
namespace Application\Test;

use PDO;
use Exception;
use DateTime;
use DateInterval;
use PDOException;
use SplFileObject;
use InvalidArgumentsException;
use Application\Database\Connection;

class FakeData
{
 // data generation methods here
}

9.	 Next, we define constants and properties that will be used as part of the process:
const MAX_LOOKUPS = 10;
const SOURCE_FILE = 'file';
const SOURCE_TABLE = 'table';
const SOURCE_METHOD = 'method';
const SOURCE_CALLBACK = 'callback';
const FILE_TYPE_CSV = 'csv';
const FILE_TYPE_TXT = 'txt';
const ERROR_DB = 'ERROR: unable to read source table';
const ERROR_FILE = 'ERROR: file not found';
const ERROR_COUNT = 'ERROR: unable to ascertain count or ID
 column missing';

Chapter 13

521

const ERROR_UPLOAD = 'ERROR: unable to upload file';
const ERROR_LOOKUP = 'ERROR: unable to find any IDs in the
 source table';

protected $connection;
protected $mapping;
protected $files;
protected $tables;

10.	 We then define properties that will be used to generate random letters, street names,
and e-mail addresses. You can think of these arrays as seeds that can be modified
and/or expanded to suite your needs. As an example, you might substitute street
name fragments in Paris for a French audience:
protected $alpha = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
protected $street1 = ['Amber','Blue','Bright','Broad','Burning',
 'Cinder','Clear','Dewy','Dusty','Easy']; // etc.
protected $street2 = ['Anchor','Apple','Autumn','Barn','Beacon',
 'Bear','Berry','Blossom','Bluff','Cider','Cloud']; // etc.
protected $street3 = ['Acres','Arbor','Avenue','Bank','Bend',
 'Canyon','Circle','Street'];
protected $email1 = ['northern','southern','eastern','western',
 'fast','midland','central'];
protected $email2 = ['telecom','telco','net','connect'];
protected $email3 = ['com','net'];

11.	 In the constructor, we accept a Connection object, used for database access, an
array of mappings to the fake data:
public function __construct(Connection $conn, array $mapping)
{
 $this->connection = $conn;
 $this->mapping = $mapping;
}

12.	 To generate street names, rather than attempt to create a database table, it might be
more efficient to use a set of seed arrays to generate random combinations. Here is
an example of how this might work:
public function getAddress($entry)
{
 return random_int(1,999)
 . ' ' . $this->street1[array_rand($this->street1)]
 . ' ' . $this->street2[array_rand($this->street2)]
 . ' ' . $this->street3[array_rand($this->street3)];
}

Best Practices, Testing, and Debugging

522

13.	 Depending on the level of realism desired, you could also build a database table that
matches postal codes to cities. Postal codes could also be randomly generated. Here
is an example that generates postal codes for the UK:
public function getPostalCode($entry, $pattern = 1)
{
 return $this->alpha[random_int(0,25)]
 . $this->alpha[random_int(0,25)]
 . random_int(1, 99)
 . ' '
 . random_int(1, 9)
 . $this->alpha[random_int(0,25)]
 . $this->alpha[random_int(0,25)];
}

14.	 Fake e-mail generation can likewise use a set of seed arrays to produce random
results. We could also program it to receive an existing $entry array, with
parameters, and use those parameters to create the name portion of the address:
public function getEmail($entry, $params = NULL)
{
 $first = $entry[$params[0]] ?? $this->alpha[random_int(0,25)];
 $last = $entry[$params[1]] ?? $this->alpha[random_int(0,25)];
 return $first[0] . '.' . $last
 . '@'
 . $this->email1[array_rand($this->email1)]
 . $this->email2[array_rand($this->email2)]
 . '.'
 . $this->email3[array_rand($this->email3)];
}

15.	 For date generation, one approach would be to accept as arguments an existing
$entry array, with parameters. The parameters would be an array where the first
value is a start date. The second parameter would be the maximum number of days
to subtract from the start date. This effectively lets you return a random date from a
range. Note that we use DateTime::sub() to subtract a random number of days.
sub() requires a DateInterval instance, which we build using P, the random
number of days, and then 'D':
public function getDate($entry, $params)
{
 list($fromDate, $maxDays) = $params;
 $date = new DateTime($fromDate);
 $date->sub(new DateInterval('P' . random_int(0, $maxDays) . 'D'));
 return $date->format('Y-m-d H:i:s');
}

Chapter 13

523

16.	 As mentioned at the beginning of this recipe, the data sources we will use for fake
data generation will vary. In some cases, as shown in the previous few steps, we use
seed arrays, and build the fake data. In other cases, we might want to use a text or
CSV file as a data source. Here is how such a method might look:
public function getEntryFromFile($name, $type)
{
 if (empty($this->files[$name])) {
 $this->pullFileData($name, $type);
 }
 return $this->files[$name][
 random_int(0, count($this->files[$name]))];
}

17.	 You will note that we first need to pull the file data into an array, which forms the
return value. Here is the method that does that for us. We throw an Exception if
the specified file is not found. The file type is identified as one of our class constants:
FILE_TYPE_TEXT or FILE_TYPE_CSV. Depending on the type, we use either
fgetcsv() or fgets():
public function pullFileData($name, $type)
{
 if (!file_exists($name)) {
 throw new Exception(self::ERROR_FILE);
 }
 $fileObj = new SplFileObject($name, 'r');
 if ($type == self::FILE_TYPE_CSV) {
 while ($data = $fileObj->fgetcsv()) {
 $this->files[$name][] = trim($data);
 }
 } else {
 while ($data = $fileObj->fgets()) {
 $this->files[$name][] = trim($data);
 }
 }

18.	 Probably the most complicated aspect of this process is drawing random data from
a database table. We accept as arguments the table name, the name of the column
that comprises the primary key, an array that maps between the database column
name in the lookup table, and the target column name:
public function getEntryFromTable($tableName, $idColumn, $mapping)
{
 $entry = array();
 try {
 if (empty($this->tables[$tableName])) {

Best Practices, Testing, and Debugging

524

 $sql = 'SELECT ' . $idColumn . ' FROM ' . $tableName
 . ' ORDER BY ' . $idColumn . ' ASC LIMIT 1';
 $stmt = $this->connection->pdo->query($sql);
 $this->tables[$tableName]['first'] =
 $stmt->fetchColumn();
 $sql = 'SELECT ' . $idColumn . ' FROM ' . $tableName
 . ' ORDER BY ' . $idColumn . ' DESC LIMIT 1';
 $stmt = $this->connection->pdo->query($sql);
 $this->tables[$tableName]['last'] =
 $stmt->fetchColumn();
 }

19.	 We are now in a position to set up the prepared statement and initialize a number of
critical variables:
$result = FALSE;
$count = self::MAX_LOOKUPS;
$sql = 'SELECT * FROM ' . $tableName
 . ' WHERE ' . $idColumn . ' = ?';
$stmt = $this->connection->pdo->prepare($sql);

20.	 The actual lookup we place inside a do…while loop. The reason for this is that we
need to run the query at least once to achieve results. Only if we do not arrive at a
result do we continue with the loop. We generate a random number between the
lowest ID and the highest ID, and then use this in a parameter in the query. Notice
that we also decrement a counter to prevent an endless loop. This is in case the IDs
are not sequential, in which case we could accidentally generate an ID that does
not exist. If we exceed the maximum attempts, still with no results, we throw an
Exception:
do {
 $id = random_int($this->tables[$tableName]['first'],
 $this->tables[$tableName]['last']);
 $stmt->execute([$id]);
 $result = $stmt->fetch(PDO::FETCH_ASSOC);
} while ($count-- && !$result);
 if (!$result) {
 error_log(__METHOD__ . ':' . self::ERROR_LOOKUP);
 throw new Exception(self::ERROR_LOOKUP);
 }
} catch (PDOException $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(self::ERROR_DB);
}

Chapter 13

525

21.	 We then use the mapping array to retrieve values from the source table using keys
expected in the destination table:
foreach ($mapping as $key => $value) {
 $entry[$value] = $result[$key] ?? NULL;
}
return $entry;
}

22.	 The heart of this class is a getRandomEntry() method, which generates a single
array of fake data. We loop through $mapping one entry at a time and examine the
various parameters:
public function getRandomEntry()
{
 $entry = array();
 foreach ($this->mapping as $key => $value) {
 if (isset($value['source'])) {
 switch ($value['source']) {

23.	 The source parameter is used to implement what effectively serves as a
Strategy Pattern. We support four different possibilities for source, all defined
as class constants. The first one is SOURCE_FILE. In this case, we use the
getEntryFromFile() method discussed previously:
 case self::SOURCE_FILE :
 $entry[$key] = $this->getEntryFromFile(
 $value['name'], $value['type']);
 break;

24.	 The callback option returns a value according to the callback supplied in the
$mapping array:
 case self::SOURCE_CALLBACK :
 $entry[$key] = $value['name']();
 break;

25.	 The SOURCE_TABLE option uses the database table defined in $mapping as a
lookup. Note that getEntryFromTable(), discussed previously, is able to return
an array of values, which means we need to use array_merge() to consolidate the
results:
 case self::SOURCE_TABLE :
 $result = $this->getEntryFromTable(
 $value['name'],$value['idCol'],$value['mapping']);
 $entry = array_merge($entry, $result);
 break;

Best Practices, Testing, and Debugging

526

26.	 The SOURCE_METHOD option, which is also the default, uses a method already
included with this class. We check to see whether parameters are included, and, if
so, add those to the method call. Note the use of {} to influence interpolation. If we
made a $this->$value['name']() PHP 7 call, due to the Abstract Syntax Tree
(AST) rewrite, it would interpolate like this, ${$this->$value}['name'](), which
is not what we want:
 case self::SOURCE_METHOD :
 default :
 if (!empty($value['params'])) {
 $entry[$key] = $this->{$value['name']}(
 $entry, $value['params']);
 } else {
 $entry[$key] = $this->{$value['name']}($entry);
 }
 }
 }
 }
 return $entry;
}

27.	 We define a method that loops through getRandomEntry() to produce multiple
lines of fake data. We also add an option to insert to a destination table. If this option
is enabled, we set up a prepared statement to insert, and also check to see whether
we need to truncate any data currently in this table:
public function generateData(
$howMany, $destTableName = NULL, $truncateDestTable = FALSE)
{
 try {
 if ($destTableName) {
 $sql = 'INSERT INTO ' . $destTableName
 . ' (' . implode(',', array_keys($this->mapping))
 . ') '. ' VALUES ' . ' (:'
 . implode(',:', array_keys($this->mapping)) . ')';
 $stmt = $this->connection->pdo->prepare($sql);
 if ($truncateDestTable) {
 $sql = 'DELETE FROM ' . $destTableName;
 $this->connection->pdo->query($sql);
 }
 }
 } catch (PDOException $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(self::ERROR_COUNT);
 }

Chapter 13

527

28.	 Next, we loop through the number of lines of data requested, and run
getRandomEntry(). If a database insert is requested, we execute the prepared
statement in a try/catch block. In any event, we turn this method into a generator
using the yield keyword:

for ($x = 0; $x < $howMany; $x++) {
 $entry = $this->getRandomEntry();
 if ($insert) {
 try {
 $stmt->execute($entry);
 } catch (PDOException $e) {
 error_log(__METHOD__ . ':' . $e->getMessage());
 throw new Exception(self::ERROR_DB);
 }
 }
 yield $entry;
}
}

Best practice
If the amount of data to be returned is massive, it's much better to yield
the data as it is produced, thus saving the memory required for an array.

How it works…
The first thing to do is to ensure you have the data ready for random data generation. In this
recipe, we will presume that the destination table is prospects, which has the following SQL
database definition shown in step 7.

As a data source for names, you could create text files for first names and surnames. In this
illustration, we will reference the data/files directory, and the files first_names.txt
and surnames.txt. For city, state or province, postal code, and country, it might be useful
to download the data from a source such as http://www.geonames.org/, and upload to
a world_city_data table. For the remaining fields, such as address, e-mail, status, and so
on, you could either use methods built into FakeData, or define callbacks.

Next, be sure to define Application\Test\FakeData, adding the content discussed in
steps 8 to 29. After you have finished, create a calling program called chap_13_fake_data.
php, which sets up autoloading and uses the appropriate classes. You should also define
constants that match the path to the database configuration, and names files:

<?php
define('DB_CONFIG_FILE', __DIR__ . '/../config/db.config.php');
define('FIRST_NAME_FILE', __DIR__ . '/../data/files/first_names.txt');
define('LAST_NAME_FILE', __DIR__ . '/../data/files/surnames.txt');

http://www.geonames.org/

Best Practices, Testing, and Debugging

528

require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Test\FakeData;
use Application\Database\Connection;

Next, define a mapping array that uses the column names in the destination table (prospects)
as a key. You need to then define sub-keys for source, name, and any other parameters that
are required. For starters, 'first_name' and 'last_name' will both use a file as a source,
'name' points to the name of the file, and 'type' indicates a file type of text:

$mapping = [
 'first_name' => ['source' => FakeData::SOURCE_FILE,
 'name' => FIRST_NAME_FILE,
 'type' => FakeData::FILE_TYPE_TXT],
 'last_name' => ['source' => FakeData::SOURCE_FILE,
 'name' => LAST_NAME_FILE,
 'type' => FakeData::FILE_TYPE_TXT],

The 'address', 'email', and 'last_updated' all use built-in methods as a data source.
The last two also define parameters to be passed:

 'address' => ['source' => FakeData::SOURCE_METHOD,
 'name' => 'getAddress'],
 'email' => ['source' => FakeData::SOURCE_METHOD,
 'name' => 'getEmail',
 'params' => ['first_name','last_name']],
 'last_updated' => ['source' => FakeData::SOURCE_METHOD,
 'name' => 'getDate',
 'params' => [date('Y-m-d'), 365*5]]

The 'phone', 'status' and 'budget' could all use callbacks to provide fake data:

 'phone' => ['source' => FakeData::SOURCE_CALLBACK,
 'name' => function () {
 return sprintf('%3d-%3d-%4d', random_int(101,999),
 random_int(101,999), random_int(0,9999)); }],
 'status' => ['source' => FakeData::SOURCE_CALLBACK,
 'name' => function () { $status = ['BEG','INT','ADV'];
 return $status[rand(0,2)]; }],
 'budget' => ['source' => FakeData::SOURCE_CALLBACK,
 'name' => function() { return random_int(0, 99999)
 + (random_int(0, 99) * .01); }]

Chapter 13

529

And finally, 'city' draws its data from a lookup table, which also gives you data for the fields
listed in the 'mapping' parameter. You can then leave those keys undefined. Notice that you
should also specify the column representing the primary key for the table:

'city' => ['source' => FakeData::SOURCE_TABLE,
'name' => 'world_city_data',
'idCol' => 'id',
'mapping' => [
'city' => 'city',
'state_province' => 'state_province',
'postal_code_prefix' => 'postal_code',
'iso2' => 'country']
],
 'state_province'=> [],
 'postal_code' => [],
 'country' => [],
];

You can then define the destination table, a Connection instance, and create the FakeData
instance. A foreach() loop will suffice to display a given number of entries:

$destTableName = 'prospects';
$conn = new Connection(include DB_CONFIG_FILE);
$fake = new FakeData($conn, $mapping);
foreach ($fake->generateData(10) as $row) {
 echo implode(':', $row) . PHP_EOL;
}

The output, for 10 rows, would look something like this:

Best Practices, Testing, and Debugging

530

There's more…
Here is a summary of websites with various lists of data that could be of use when generating
test data:

Type of
Data

URL Notes

Names http://nameberry.com/

http://www.babynamewizard.
com/international-names-lists-
popular-names-from-around-the-
world

Raw
Name
Lists

http://deron.meranda.us/data/
census-dist-female-first.txt

US female first names

http://deron.meranda.us/data/
census-dist-male-first.txt

US male first names

http://www.avss.ucsb.edu/
NameFema.HTM

US female first names

http://www.avss.ucsb.edu/
namemal.htm

US male first names

Last
Names

http://names.mongabay.com/
data/1000.html

US surnames from census

http://surname.sofeminine.
co.uk/w/surnames/most-common-
surnames-in-great-britain.html

British surnames

https://gist.github.com/
subodhghulaxe/8148971

List of US surnames in the form of a
PHP array

http://www.dutchgenealogy.nl/
tng/surnames-all.php

Dutch surnames

http://www.worldvitalrecords.
com/browsesurnames.aspx?l=A

International surnames; just change
the last letter(s) to get a list of
names starting with that letter(s)

Cities http://www.travelgis.com/
default.asp?framesrc=/cities/

World cities

http://nameberry.com/
http://www.babynamewizard.com/international-names-lists-popular-names-from-around-the-world
http://www.babynamewizard.com/international-names-lists-popular-names-from-around-the-world
http://www.babynamewizard.com/international-names-lists-popular-names-from-around-the-world
http://www.babynamewizard.com/international-names-lists-popular-names-from-around-the-world
http://deron.meranda.us/data/census-dist-female-first.txt
http://deron.meranda.us/data/census-dist-female-first.txt
http://deron.meranda.us/data/census-dist-male-first.txt
http://deron.meranda.us/data/census-dist-male-first.txt
http://www.avss.ucsb.edu/NameFema.HTM
http://www.avss.ucsb.edu/NameFema.HTM
http://www.avss.ucsb.edu/namemal.htm
http://www.avss.ucsb.edu/namemal.htm
http://names.mongabay.com/data/1000.html
http://names.mongabay.com/data/1000.html
http://surname.sofeminine.co.uk/w/surnames/most-common-surnames-in-great-britain.html
http://surname.sofeminine.co.uk/w/surnames/most-common-surnames-in-great-britain.html
http://surname.sofeminine.co.uk/w/surnames/most-common-surnames-in-great-britain.html
https://gist.github.com/subodhghulaxe/8148971
https://gist.github.com/subodhghulaxe/8148971
http://www.dutchgenealogy.nl/tng/surnames-all.php
http://www.dutchgenealogy.nl/tng/surnames-all.php
http://www.worldvitalrecords.com/browsesurnames.aspx?l=A
http://www.worldvitalrecords.com/browsesurnames.aspx?l=A
http://www.travelgis.com/default.asp?framesrc=/cities/
http://www.travelgis.com/default.asp?framesrc=/cities/

Chapter 13

531

Type of
Data

URL Notes

https://www.maxmind.com/en/free-
world-cities-database

https://github.com/David-Haim/
CountriesToCitiesJSON

http://www.fallingrain.com/
world/index.html

Postal
Codes

https://boutell.com/zipcodes/ US only; includes cities, postal
codes, latitude and longitude

http://www.geonames.org/export/ International; city names, postal
codes, EVERYTHING!; free download

Customizing sessions using session_start
parameters

Up until PHP 7, in order to override php.ini settings for secure session management, you
had to use a series of ini_set() commands. This approach is extremely annoying in that
you also needed to know which settings were available, and being able to re-use the same
settings in other applications was difficult. As of PHP 7, however, you can supply an array of
parameters to the session_start() command, which immediately sets those values.

How to do it…
1.	 We start by developing an Application\Security\SessOptions class, which

will hold session parameters and also have the ability to start the session. We also
define a class constant in case invalid session options are passed:
namespace Application\Security;
use ReflectionClass;
use InvalidArgumentsException;
class SessOptions
{
 const ERROR_PARAMS = 'ERROR: invalid session options';

https://www.maxmind.com/en/free-world-cities-database
https://www.maxmind.com/en/free-world-cities-database
https://github.com/David-Haim/CountriesToCitiesJSON
https://github.com/David-Haim/CountriesToCitiesJSON
http://www.fallingrain.com/world/index.html
http://www.fallingrain.com/world/index.html
https://boutell.com/zipcodes/
http://www.geonames.org/export/

Best Practices, Testing, and Debugging

532

2.	 Next we scan the list of php.ini session directives (documented at http://php.
net/manual/en/session.configuration.php). We are specifically looking
for directives that, in the Changeable column, are marked PHP_INI_ALL. Such
directives can be overridden at runtime, and are thus available as arguments to
session_start():

3.	 We then define these as class constants, which will make this class more usable for
development purposes. Most decent code editors will be able to scan the class and
give you a list of constants, making it easy to manage session settings. Please note
that not all settings are shown, in order to conserve space in the book:
const SESS_OP_NAME = 'name';
const SESS_OP_LAZY_WRITE = 'lazy_write'; // AVAILABLE
 // SINCE PHP 7.0.0.
const SESS_OP_SAVE_PATH = 'save_path';
const SESS_OP_SAVE_HANDLER = 'save_handler';
// etc.

http://php.net/manual/en/session.configuration.php
http://php.net/manual/en/session.configuration.php

Chapter 13

533

4.	 We are then in a position to define the constructor, which accepts an array of php.
ini session settings as an argument. We use ReflectionClass to get a list of
class constants, and run the $options argument through a loop to confirm the
setting is allowed. Also note the use of array_flip(), which flips keys and values,
so that the actual values for our class constants form the array key, and the name of
the class constant becomes the value:
protected $options;
protected $allowed;
public function __construct(array $options)
{
 $reflect = new ReflectionClass(get_class($this));
 $this->allowed = $reflect->getConstants();
 $this->allowed = array_flip($this->allowed);
 unset($this->allowed[self::ERROR_PARAMS]);
 foreach ($options as $key => $value) {
 if(!isset($this->allowed[$key])) {
 error_log(__METHOD__ . ':' . self::ERROR_PARAMS);
 throw new InvalidArgumentsException(
 self::ERROR_PARAMS);
 }
 }
 $this->options = $options;
}

5.	 We then close with two more methods; one gives us outside access to the allowed
parameters, while the other starts the session:

public function getAllowed()
{
 return $this->allowed;
}

public function start()
{
 session_start($this->options);
}

Best Practices, Testing, and Debugging

534

How it works…
Place all the code discussed in this recipe into a SessOptions.php file in the
Application\Security directory. You can then define a calling program called chap_13_
session_options.php to test the new class, which sets up autoloading and uses the class:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\Security\SessOptions;

Next, define an array that uses the class constants as keys, with values as desired to
manage the session. Note that in the example shown here, session information is stored in a
subdirectory, session, which you need to create:

$options = [
 SessOptions::SESS_OP_USE_ONLY_COOKIES => 1,
 SessOptions::SESS_OP_COOKIE_LIFETIME => 300,
 SessOptions::SESS_OP_COOKIE_HTTPONLY => 1,
 SessOptions::SESS_OP_NAME => 'UNLIKELYSOURCE',
 SessOptions::SESS_OP_SAVE_PATH => __DIR__ . '/session'
];

You can now create the SessOptions instance and run start() to start the session. You
could use phpinfo() here to show some information on the session:

$sessOpt = new SessOptions($options);
$sessOpt->start();
$_SESSION['test'] = 'TEST';
phpinfo(INFO_VARIABLES);

If you look for information on cookies using your browser's developer tools, you will note the
name is set to UNLIKELYSOURCE and the expiration time is 5 minutes from now:

Chapter 13

535

If you do a scan of the session directory, you will see that the session information has been
stored there:

See also…
ff For more information on session-related php.ini directives, see this summary:

http://php.net/manual/en/session.configuration.php

http://php.net/manual/en/session.configuration.php

537

Defining PSR-7 Classes

In this appendix, we will cover the following topics:

ff Implementing PSR-7 value object classes

ff Developing a PSR-7 Request class

ff Defining a PSR-7 Response class

Introduction
PHP Standard Recommendation number 7 (PSR-7) defines a number of interfaces, but
does not provide actual implementations. Accordingly, we need to define concrete code
implementations in order to start creating custom middleware.

Implementing PSR-7 value object classes
In order to work with PSR-7 requests and responses, we first need to define a series of value
objects. These are classes that represent logical objects used in web-based activities such as
URIs, file uploads, and streaming request or response bodies.

Getting ready
The source code for the PSR-7 interfaces is available as a Composer package. It is
considered a best practice to use Composer to manage external software, including PSR-7
interfaces.

Defining PSR-7 Classes

538

How to do it...
1.	 First of all, go to the following URL to obtain the latest versions of the PSR-7 interface

definitions: https://github.com/php-fig/http-message. The source code is
also available. At the time of writing, the following definitions are available:

Interface Extends Notes What the methods
handle

MessageInterface Defines methods
common to HTTP
messages

Headers, message
body (that is,
content), and
protocol

RequestInterface MessageInterface Represents requests
generated by a client

The URI, HTTP
method, and the
request target

ServerRequestInterface RequestInterface Represents a request
coming to a server
from a client

Server and query
parameters, cookies,
uploaded files, and
the parsed body

ResponseInterface MessageInterface Represents a response
from the server to
client

HTTP status code
and reason

StreamInterface Represents the data
stream

Streaming behavior
such as seek, tell,
read, write, and
so on

UriInterface Represents the URI Scheme (that is,
HTTP, HTTPS), host,
port, username,
password (that
is, for FTP), query
parameters, path,
and fragment

UploadedFileInterface Deals with uploaded
files

File size, media type,
moving the file, and
filename

2.	 Unfortunately, we will need to create concrete classes that implement these
interfaces in order to utilize PSR-7. Fortunately, the interface classes are extensively
documented internally through a series of comments. We will start with a separate
class that contains useful constants:

Note that we take advantage of a new feature introduced in PHP 7 that
allows us to define a constant as an array.

https://github.com/php-fig/http-message

Appendix

539

namespace Application\MiddleWare;
class Constants
{
 const HEADER_HOST = 'Host'; // host header
 const HEADER_CONTENT_TYPE = 'Content-Type';
 const HEADER_CONTENT_LENGTH = 'Content-Length';

 const METHOD_GET = 'get';
 const METHOD_POST = 'post';
 const METHOD_PUT = 'put';
 const METHOD_DELETE = 'delete';
 const HTTP_METHODS = ['get','put','post','delete'];

 const STANDARD_PORTS = [
 'ftp' => 21, 'ssh' => 22, 'http' => 80, 'https' => 443
];

 const CONTENT_TYPE_FORM_ENCODED =
 'application/x-www-form-urlencoded';
 const CONTENT_TYPE_MULTI_FORM = 'multipart/form-data';
 const CONTENT_TYPE_JSON = 'application/json';
 const CONTENT_TYPE_HAL_JSON = 'application/hal+json';

 const DEFAULT_STATUS_CODE = 200;
 const DEFAULT_BODY_STREAM = 'php://input';
 const DEFAULT_REQUEST_TARGET = '/';

 const MODE_READ = 'r';
 const MODE_WRITE = 'w';

 // NOTE: not all error constants are shown to conserve space
 const ERROR_BAD = 'ERROR: ';
 const ERROR_UNKNOWN = 'ERROR: unknown';

 // NOTE: not all status codes are shown here!
 const STATUS_CODES = [
 200 => 'OK',
 301 => 'Moved Permanently',
 302 => 'Found',
 401 => 'Unauthorized',
 404 => 'Not Found',
 405 => 'Method Not Allowed',
 418 => 'I_m A Teapot',
 500 => 'Internal Server Error',
];
}

Defining PSR-7 Classes

540

A complete list of HTTP status codes can be found here: https://tools.
ietf.org/html/rfc7231#section-6.1.

3.	 Next, we will tackle classes that represent value objects used by other PSR-7 classes.
For a start, here is the class that represents a URI. In the constructor, we accept a
URI string as an argument, and break it down into its component parts using the
parse_url() function:
namespace Application\MiddleWare;
use InvalidArgumentException;
use Psr\Http\Message\UriInterface;
class Uri implements UriInterface
{
 protected $uriString;
 protected $uriParts = array();

 public function __construct($uriString)
 {
 $this->uriParts = parse_url($uriString);
 if (!$this->uriParts) {
 throw new InvalidArgumentException(
 Constants::ERROR_INVALID_URI);
 }
 $this->uriString = $uriString;
 }

URI stands for Uniform Resource Indicator. This is what you would see
at the top of your browser when making a request. For more information
on what comprises a URI, have a look at http://tools.ietf.org/
html/rfc3986.

4.	 Following the constructor, we define methods to access the component parts of the
URI. The scheme represents a PHP wrapper (that is, HTTP, FTP, and so on):
public function getScheme()
{
 return strtolower($this->uriParts['scheme']) ?? '';
}

5.	 The authority represents the username (if present), the host, and optionally the port
number:
public function getAuthority()
{
 $val = '';
 if (!empty($this->getUserInfo()))
 $val .= $this->getUserInfo() . '@';

https://tools.ietf.org/html/rfc7231#section-6.1
https://tools.ietf.org/html/rfc7231#section-6.1
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986

Appendix

541

 $val .= $this->uriParts['host'] ?? '';
 if (!empty($this->uriParts['port']))
 $val .= ':' . $this->uriParts['port'];
 return $val;
}

6.	 User info represents the username (if present) and optionally the password. An
example of when a password is used is when accessing an FTP website such as
ftp://username:password@website.com:/path:
public function getUserInfo()
{
 if (empty($this->uriParts['user'])) {
 return '';
 }
 $val = $this->uriParts['user'];
 if (!empty($this->uriParts['pass']))
 $val .= ':' . $this->uriParts['pass'];
 return $val;
}

7.	 Host is the DNS address included in the URI:
public function getHost()
{
 if (empty($this->uriParts['host'])) {
 return '';
 }
 return strtolower($this->uriParts['host']);
}

8.	 Port is the HTTP port, if present. You will note if a port is listed in our STANDARD_
PORTS constant, the return value is NULL, according to the requirements of PSR-7:
public function getPort()
{
 if (empty($this->uriParts['port'])) {
 return NULL;
 } else {
 if ($this->getScheme()) {
 if ($this->uriParts['port'] ==
 Constants::STANDARD_PORTS[$this->getScheme()]) {
 return NULL;
 }
 }
 return (int) $this->uriParts['port'];
 }
}

Defining PSR-7 Classes

542

9.	 Path is the part of the URI that follows the DNS address. According to PSR-7, this
must be encoded. We use the rawurlencode() PHP function as it is compliant with
RFC 3986. We cannot just encode the entire path, however, as the path separator
(that is, /) would also get encoded! Accordingly, we need to first break it up using
explode(), encode the parts, and then reassemble it:
public function getPath()
{
 if (empty($this->urlParts['path'])) {
 return '';
 }
 return implode('/', array_map("rawurlencode",
 explode('/', $this->urlParts['path'])));
}

10.	 Next, we define a method to retrieve the query string (that is, from $_GET). These
too must be URL-encoded. First, we define getQueryParams(), which breaks the
query string into an associative array. You will note the reset option in case we wish
to refresh the query parameters. We then define getQuery(), which takes the array
and produces a proper URL-encoded string:
public function getQueryParams($reset = FALSE)
{
 if ($this->queryParams && !$reset) {
 return $this->queryParams;
 }
 $this->queryParams = [];
 if (!empty($this->uriParts['query'])) {
 foreach (explode('&', $this->uriParts['query']) as $keyPair) {
 list($param,$value) = explode('=',$keyPair);
 $this->queryParams[$param] = $value;
 }
 }
 return $this->queryParams;
}

public function getQuery()
{
 if (!$this->getQueryParams()) {
 return '';
 }
 $output = '';
 foreach ($this->getQueryParams() as $key => $value) {
 $output .= rawurlencode($key) . '='

Appendix

543

 . rawurlencode($value) . '&';
 }
 return substr($output, 0, -1);
}

11.	 After that, we provide a method to return the fragment (that is, a # in the URI), and
any part following it:
public function getFragment()
{
 if (empty($this->urlParts['fragment'])) {
 return '';
 }
 return rawurlencode($this->urlParts['fragment']);
}

12.	 Next, we define a series of withXXX() methods, which match the getXXX()
methods described above. These methods are designed to add, replace, or remove
properties associated with the request class (scheme, authority, user info, and so on).
In addition, these methods return the current instance that allows us to use these
methods in a series of successive calls (often referred to as the fluent interface). We
start with withScheme():

You will note that an empty argument, according to PSR-7,
signals the removal of that property. You will also note that we do
not allow a scheme that does not match what is defined in our
Constants::STANDARD_PORTS array.

public function withScheme($scheme)
{
 if (empty($scheme) && $this->getScheme()) {
 unset($this->uriParts['scheme']);
 } else {
 if (isset(STANDARD_PORTS[strtolower($scheme)])) {
 $this->uriParts['scheme'] = $scheme;
 } else {
 throw new InvalidArgumentException(
 Constants::ERROR_BAD . __METHOD__);
 }
 }
 return $this;
}

Defining PSR-7 Classes

544

13.	 We then apply similar logic to methods that overwrite, add, or replace the user
info, host, port, path, query, and fragment. Note that the withQuery() method
resets the query parameters array. withHost(), withPort(), withPath(), and
withFragment() use the same logic, but are not shown to conserve space:
public function withUserInfo($user, $password = null)
{
 if (empty($user) && $this->getUserInfo()) {
 unset($this->uriParts['user']);
 } else {
 $this->urlParts['user'] = $user;
 if ($password) {
 $this->urlParts['pass'] = $password;
 }
 }
 return $this;
}
// Not shown: withHost(),withPort(),withPath(),withFragment()

public function withQuery($query)
{
 if (empty($query) && $this->getQuery()) {
 unset($this->uriParts['query']);
 } else {
 $this->uriParts['query'] = $query;
 }
 // reset query params array
 $this->getQueryParams(TRUE);
 return $this;
}

14.	 Finally, we wrap up the Application\MiddleWare\Uri class with
__toString(), which, when the object is used in a string context, returns a
proper URI, assembled from $uriParts. We also define a convenience method,
getUriString(), that simply calls __toString():
public function __toString()
{
 $uri = ($this->getScheme())
 ? $this->getScheme() . '://' : '';

15.	 If the authority URI part is present, we add it. authority includes the user
information, host, and port. Otherwise, we just append host and port:
if ($this->getAuthority()) {
 $uri .= $this->getAuthority();
} else {

Appendix

545

 $uri .= ($this->getHost()) ? $this->getHost() : '';
 $uri .= ($this->getPort())
 ? ':' . $this->getPort() : '';
}

16.	 Before adding path, we first check whether the first character is /. If not, we need to
add this separator. We then add query and fragment, if present:
$path = $this->getPath();
if ($path) {
 if ($path[0] != '/') {
 $uri .= '/' . $path;
 } else {
 $uri .= $path;
 }
}
$uri .= ($this->getQuery())
 ? '?' . $this->getQuery() : '';
$uri .= ($this->getFragment())
 ? '#' . $this->getFragment() : '';
return $uri;
}

public function getUriString()
{
 return $this->__toString();
}

}

Note the use of string dereferencing (that is, $path[0]), now part of PHP 7.

17.	 Next, we turn our attention to a class that represents the body of the message. As it
is not known how large the body might be, PSR-7 recommends that the body should
be treated as a stream. A stream is a resource that allows access to input and output
sources in a linear fashion. In PHP, all file commands operate on top of the Streams
sub-system, so this is a natural fit. PSR-7 formalizes this by way of Psr\Http\
Message\StreamInterface that defines such methods as read(), write(),
seek(), and so on. We now present Application\MiddleWare\Stream that we
can use to represent the body of incoming or outgoing requests and/or responses:
namespace Application\MiddleWare;
use SplFileInfo;
use Throwable;

Defining PSR-7 Classes

546

use RuntimeException;
use Psr\Http\Message\StreamInterface;
class Stream implements StreamInterface
{
 protected $stream;
 protected $metadata;
 protected $info;

18.	 In the constructor, we open the stream using a simple fopen() command. We then
use stream_get_meta_data() to get information on the stream. For other details,
we create an SplFileInfo instance:
public function __construct($input, $mode = self::MODE_READ)
{
 $this->stream = fopen($input, $mode);
 $this->metadata = stream_get_meta_data($this->stream);
 $this->info = new SplFileInfo($input);
}

The reason why we chose fopen() over the more modern SplFileObject
is that the latter does not allow direct access to the inner file resource object,
and is therefore useless for this application.

19.	 We include two convenience methods that provide access to the resource, as well as
access to the SplFileInfo instance:
public function getStream()
{
 return $this->stream;
}

public function getInfo()
{
 return $this->info;
}

20.	 Next, we define low-level core streaming methods:
public function read($length)
{
 if (!fread($this->stream, $length)) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
}

Appendix

547

public function write($string)
{
 if (!fwrite($this->stream, $string)) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
}
public function rewind()
{
 if (!rewind($this->stream)) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
}
public function eof()
{
 return eof($this->stream);
}
public function tell()
{
 try {
 return ftell($this->stream);
 } catch (Throwable $e) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
}
public function seek($offset, $whence = SEEK_SET)
{
 try {
 fseek($this->stream, $offset, $whence);
 } catch (Throwable $e) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
}
public function close()
{
 if ($this->stream) {
 fclose($this->stream);
 }
}
public function detach()
{
 return $this->close();
}

Defining PSR-7 Classes

548

21.	 We also need to define informational methods that tell us about the stream:
public function getMetadata($key = null)
{
 if ($key) {
 return $this->metadata[$key] ?? NULL;
 } else {
 return $this->metadata;
 }
}
public function getSize()
{
 return $this->info->getSize();
}
public function isSeekable()
{
 return boolval($this->metadata['seekable']);
}
public function isWritable()
{
 return $this->stream->isWritable();
}
public function isReadable()
{
 return $this->info->isReadable();
}

22.	 Following PSR-7 guidelines, we then define getContents() and __toString() in
order to dump the contents of the stream:
public function __toString()
{
 $this->rewind();
 return $this->getContents();
}

public function getContents()
{
 ob_start();
 if (!fpassthru($this->stream)) {
 throw new RuntimeException(
 self::ERROR_BAD . __METHOD__);
 }
 return ob_get_clean();
}
}

Appendix

549

23.	 An important variation of the Stream class shown previously is TextStream that is
designed for situations where the body is a string (that is, an array encoded as JSON)
rather than a file. As we need to make absolutely certain that the incoming $input
value is of the string data type, we invoke PHP 7 strict types just after the opening
tag. We also identify a $pos property (that is, position) that will emulate a file pointer,
but instead point to a position within the string:
<?php
declare(strict_types=1);
namespace Application\MiddleWare;
use Throwable;
use RuntimeException;
use SplFileInfo;
use Psr\Http\Message\StreamInterface;

class TextStream implements StreamInterface
{
 protected $stream;
 protected $pos = 0;

24.	 Most of the methods are quite simple and self-explanatory. The $stream property is
the input string:
public function __construct(string $input)
{
 $this->stream = $input;
}
public function getStream()
{
 return $this->stream;
}
 public function getInfo()
{
 return NULL;
}
public function getContents()
{
 return $this->stream;
}
public function __toString()
{
 return $this->getContents();
}
public function getSize()
{
 return strlen($this->stream);

Defining PSR-7 Classes

550

}
public function close()
{
 // do nothing: how can you "close" string???
}
public function detach()
{
 return $this->close(); // that is, do nothing!
}

25.	 To emulate streaming behavior, tell(), eof(), seek(), and so on, work with
$pos:
public function tell()
{
 return $this->pos;
}
public function eof()
{
 return ($this->pos == strlen($this->stream));
}
public function isSeekable()
{
 return TRUE;
}
public function seek($offset, $whence = NULL)
{
 if ($offset < $this->getSize()) {
 $this->pos = $offset;
 } else {
 throw new RuntimeException(
 Constants::ERROR_BAD . __METHOD__);
 }
}
public function rewind()
{
 $this->pos = 0;
}
public function isWritable()
{
 return TRUE;
}

Appendix

551

26.	 The read() and write() methods work with $pos and substrings:
public function write($string)
{
 $temp = substr($this->stream, 0, $this->pos);
 $this->stream = $temp . $string;
 $this->pos = strlen($this->stream);
}

public function isReadable()
{
 return TRUE;
}
public function read($length)
{
 return substr($this->stream, $this->pos, $length);
}
public function getMetadata($key = null)
{
 return NULL;
}

}

27.	 The last of the value objects to be presented is Application\MiddleWare\
UploadedFile. As with the other classes, we first define properties that represent
aspects of a file upload:
namespace Application\MiddleWare;
use RuntimeException;
use InvalidArgumentException;
use Psr\Http\Message\UploadedFileInterface;
class UploadedFile implements UploadedFileInterface
{

 protected $field; // original name of file upload field
 protected $info; // $_FILES[$field]
 protected $randomize;
 protected $movedName = '';

Defining PSR-7 Classes

552

28.	 In the constructor, we allow the definition of the name attribute of the file upload form
field, as well as the corresponding array in $_FILES. We add the last parameter to
signal whether or not we want the class to generate a new random filename once the
uploaded file is confirmed:
public function __construct(
 $field, array $info, $randomize = FALSE)
{
 $this->field = $field;
 $this->info = $info;
 $this->randomize = $randomize;
}

29.	 Next, we create a Stream class instance for the temporary or moved file:
public function getStream()
{
 if (!$this->stream) {
 if ($this->movedName) {
 $this->stream = new Stream($this->movedName);
 } else {
 $this->stream = new Stream($info['tmp_name']);
 }
 }
 return $this->stream;
}

30.	 The moveTo() method performs the actual file movement. Note the extensive series
of safety checks to help prevent an injection attack. If randomize is not enabled, we
use the original user-supplied filename:
public function moveTo($targetPath)
{
 if ($this->moved) {
 throw new Exception(Constants::ERROR_MOVE_DONE);
 }
 if (!file_exists($targetPath)) {
 throw new InvalidArgumentException(Constants::ERROR_BAD_DIR);
 }
 $tempFile = $this->info['tmp_name'] ?? FALSE;
 if (!$tempFile || !file_exists($tempFile)) {
 throw new Exception(Constants::ERROR_BAD_FILE);
 }
 if (!is_uploaded_file($tempFile)) {
 throw new Exception(Constants::ERROR_FILE_NOT);
 }

Appendix

553

 if ($this->randomize) {
 $final = bin2hex(random_bytes(8)) . '.txt';
 } else {
 $final = $this->info['name'];
 }
 $final = $targetPath . '/' . $final;
 $final = str_replace('//', '/', $final);
 if (!move_uploaded_file($tempFile, $final)) {
 throw new RuntimeException(Constants::ERROR_MOVE_UNABLE);
 }
 $this->movedName = $final;
 return TRUE;
}

31.	 We then provide access to the other parameters returned in $_FILES from the
$info property. Please note that the return values from getClientFilename()
and getClientMediaType() should be considered untrusted, as they originate
from the outside. We also add a method to return the moved filename:

public function getMovedName()
{
 return $this->movedName ?? NULL;
}
public function getSize()
{
 return $this->info['size'] ?? NULL;
}
public function getError()
{
 if (!$this->moved) {
 return UPLOAD_ERR_OK;
 }
 return $this->info['error'];
}
public function getClientFilename()
{
 return $this->info['name'] ?? NULL;
}
public function getClientMediaType()
{
 return $this->info['type'] ?? NULL;
}

}

Defining PSR-7 Classes

554

How it works...
First of all, go to https://github.com/php-fig/http-message/tree/master/src,
the GitHub repository for the PSR-7 interfaces, and download them. Create a directory called
Psr/Http/Message in /path/to/source and places the files there. Alternatively, you can
visit https://packagist.org/packages/psr/http-message and install the source
code using Composer. (For instructions on how to obtain and use Composer, you can visit
https://getcomposer.org/.)

Then, go ahead and define the classes discussed previously, summarized in this table:

Class Steps discussed in
Application\MiddleWare\Constants 2
Application\MiddleWare\Uri 3 to 16
Application\MiddleWare\Stream 17 to 22
Application\MiddleWare\TextStream 23 to 26
Application\MiddleWare\UploadedFile 27 to 31

Next, define a chap_09_middleware_value_objects_uri.php calling program that
implements autoloading and uses the appropriate classes. Please note that if you use
Composer, unless otherwise instructed, it will create a folder called vendor. Composer also
adds its own autoloader, which you are free to use here:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\MiddleWare\Uri;

You can then create a Uri instance and use the with methods to add parameters. You can
then echo the Uri instance directly as __toString() is defined:

$uri = new Uri();
$uri->withScheme('https')
 ->withHost('localhost')
 ->withPort('8080')
 ->withPath('chap_09_middleware_value_objects_uri.php')
 ->withQuery('param=TEST');

echo $uri;

https://github.com/php-fig/http-message/tree/master/src
https://packagist.org/packages/psr/http-message
https://getcomposer.org/

Appendix

555

Here is the expected result:

Next, create a directory called uploads from /path/to/source/for/this/chapter.
Go ahead and define another calling program, chap_09_middleware_value_objects_
file_upload.php, that sets up autoloading and uses the appropriate classes:

<?php
define('TARGET_DIR', __DIR__ . '/uploads');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\MiddleWare\UploadedFile;

Inside a try...catch block, check to see whether any files were uploaded. If so, loop
through $_FILES and create UploadedFile instances where tmp_name is set. You can
then use the moveTo() method to move the files to TARGET_DIR:

try {
 $message = '';
 $uploadedFiles = array();
 if (isset($_FILES)) {
 foreach ($_FILES as $key => $info) {
 if ($info['tmp_name']) {
 $uploadedFiles[$key] = new UploadedFile(
 $key, $info, TRUE);
 $uploadedFiles[$key]->moveTo(TARGET_DIR);
 }
 }
 }
} catch (Throwable $e) {
 $message = $e->getMessage();
}
?>

Defining PSR-7 Classes

556

In the view logic, display a simple file upload form. You could also use phpinfo() to display
information about what was uploaded:

<form name="search" method="post"
 enctype="<?= Constants::CONTENT_TYPE_MULTI_FORM ?>">
<table class="display" cellspacing="0" width="100%">
 <tr><th>Upload 1</th><td><input type="file" name="upload_1" /></
td></tr>
 <tr><th>Upload 2</th><td><input type="file" name="upload_2" /></
td></tr>
 <tr><th>Upload 3</th><td><input type="file" name="upload_3" /></
td></tr>
 <tr><th> </th><td><input type="submit" /></td></tr>
</table>
</form>
<?= ($message) ? '<h1>' . $message . '</h1>' : ''; ?>

Next, if there were any uploaded files, you can display information on each one. You can also
use getStream() followed by getContents() to display each file (assuming you're using
short text files):

<?php if ($uploadedFiles) : ?>
<table class="display" cellspacing="0" width="100%">
 <tr>
 <th>Filename</th><th>Size</th>
 <th>Moved Filename</th><th>Text</th>
 </tr>
 <?php foreach ($uploadedFiles as $obj) : ?>
 <?php if ($obj->getMovedName()) : ?>
 <tr>
 <td><?= htmlspecialchars($obj->getClientFilename()) ?></td>
 <td><?= $obj->getSize() ?></td>
 <td><?= $obj->getMovedName() ?></td>
 <td><?= $obj->getStream()->getContents() ?></td>
 </tr>
 <?php endif; ?>
 <?php endforeach; ?>
</table>
<?php endif; ?>
<?php phpinfo(INFO_VARIABLES); ?>

Appendix

557

Here is how the output might appear:

See also
ff For more information on PSR, please have a look at https://en.wikipedia.

org/wiki/PHP_Standard_Recommendation

ff For information on PSR-7 specifically, here is the official description: http://www.
php-fig.org/psr/psr-7/

ff For information on PHP streams, take a look at http://php.net/manual/en/
book.stream.php

Developing a PSR-7 Request class
One of the key characteristics of PSR-7 middleware is the use of Request and Response
classes. When applied, this enables different blocks of software to perform together without
sharing any specific knowledge between them. In this context, a request class should
encompass all aspects of the original user request, including such items as browser settings,
the original URL requested, parameters passed, and so forth.

https://en.wikipedia.org/wiki/PHP_Standard_Recommendation
https://en.wikipedia.org/wiki/PHP_Standard_Recommendation
http://www.php-fig.org/psr/psr-7/
http://www.php-fig.org/psr/psr-7/
http://php.net/manual/en/book.stream.php
http://php.net/manual/en/book.stream.php

Defining PSR-7 Classes

558

How to do it...
1.	 First, be sure to define classes to represent the Uri, Stream, and UploadedFile

value objects, as described in the previous recipe.

2.	 Now we are ready to define the core Application\MiddleWare\Message class.
This class consumes Stream and Uri and implements Psr\Http\Message\
MessageInterface. We first define properties for the key value objects, including
those representing the message body (that is, a StreamInterface instance),
version, and HTTP headers:
namespace Application\MiddleWare;
use Psr\Http\Message\ {
 MessageInterface,
 StreamInterface,
 UriInterface
};
class Message implements MessageInterface
{
 protected $body;
 protected $version;
 protected $httpHeaders = array();

3.	 Next, we have the getBody() method that represents a StreamInterface
instance. A companion method, withBody(), returns the current Message instance
and allows us to overwrite the current value of body:
public function getBody()
{
 if (!$this->body) {
 $this->body = new Stream(self::DEFAULT_BODY_STREAM);
 }
 return $this->body;
}
public function withBody(StreamInterface $body)
{
 if (!$body->isReadable()) {
 throw new InvalidArgumentException(
 self::ERROR_BODY_UNREADABLE);
 }
 $this->body = $body;
 return $this;
}

Appendix

559

4.	 PSR-7 recommends that headers should be viewed as case-insensitive. Accordingly,
we define a findHeader() method (not directly defined by MessageInterface)
that locates a header using stripos():
protected function findHeader($name)
{
 $found = FALSE;
 foreach (array_keys($this->getHeaders()) as $header) {
 if (stripos($header, $name) !== FALSE) {
 $found = $header;
 break;
 }
 }
 return $found;
}

5.	 The next method, not defined by PSR-7, is designed to populate the $httpHeaders
property. This property is assumed to be an associative array where the key is the
header, and the value is the string representing the header value. If there is more
than one value, additional values separated by commas are appended to the string.
There is an excellent apache_request_headers() PHP function from the Apache
extension that produces headers if they are not already available in $httpHeaders:
protected function getHttpHeaders()
{
 if (!$this->httpHeaders) {
 if (function_exists('apache_request_headers')) {
 $this->httpHeaders = apache_request_headers();
 } else {
 $this->httpHeaders = $this->altApacheReqHeaders();
 }
 }
 return $this->httpHeaders;
}

6.	 If apache_request_headers() is not available (that is, the Apache extension is
not enabled), we provide an alternative, altApacheReqHeaders():
protected function altApacheReqHeaders()
{
 $headers = array();
 foreach ($_SERVER as $key => $value) {
 if (stripos($key, 'HTTP_') !== FALSE) {
 $headerKey = str_ireplace('HTTP_', '', $key);
 $headers[$this->explodeHeader($headerKey)] = $value;

Defining PSR-7 Classes

560

 } elseif (stripos($key, 'CONTENT_') !== FALSE) {
 $headers[$this->explodeHeader($key)] = $value;
 }
 }
 return $headers;
}
protected function explodeHeader($header)
{
 $headerParts = explode('_', $header);
 $headerKey = ucwords(implode(' ', strtolower($headerParts)));
 return str_replace(' ', '-', $headerKey);
}

7.	 Implementing getHeaders() (required in PSR-7) is now a trivial loop through the
$httpHeaders property produced by the getHttpHeaders() method discussed in
step 4:
public function getHeaders()
{
 foreach ($this->getHttpHeaders() as $key => $value) {
 header($key . ': ' . $value);
 }
}

8.	 Again, we provide a series of with methods designed to overwrite or replace
headers. Since there can be many headers, we also have a method that adds to the
existing set of headers. The withoutHeader() method is used to remove a header
instance. Notice the consistent use of findHeader(), mentioned in the previous
step, to allow for case-insensitive handling of headers:
public function withHeader($name, $value)
{
 $found = $this->findHeader($name);
 if ($found) {
 $this->httpHeaders[$found] = $value;
 } else {
 $this->httpHeaders[$name] = $value;
 }
 return $this;
}

public function withAddedHeader($name, $value)
{
 $found = $this->findHeader($name);
 if ($found) {

Appendix

561

 $this->httpHeaders[$found] .= $value;
 } else {
 $this->httpHeaders[$name] = $value;
 }
 return $this;
}

public function withoutHeader($name)
{
 $found = $this->findHeader($name);
 if ($found) {
 unset($this->httpHeaders[$found]);
 }
 return $this;
}

9.	 We then provide a series of useful header-related methods to confirm a header exists,
retrieve a single header line, and retrieve a header in array form, as per PSR-7:
public function hasHeader($name)
{
 return boolval($this->findHeader($name));
}

public function getHeaderLine($name)
{
 $found = $this->findHeader($name);
 if ($found) {
 return $this->httpHeaders[$found];
 } else {
 return '';
 }
}

public function getHeader($name)
{
 $line = $this->getHeaderLine($name);
 if ($line) {
 return explode(',', $line);
 } else {
 return array();
 }
}

Defining PSR-7 Classes

562

10.	 Finally, to round off header handling, we present getHeadersAsString that
produces a single header string with the headers separated by \r\n for direct use
with PHP stream contexts:
public function getHeadersAsString()
{
 $output = '';
 $headers = $this->getHeaders();
 if ($headers && is_array($headers)) {
 foreach ($headers as $key => $value) {
 if ($output) {
 $output .= "\r\n" . $key . ': ' . $value;
 } else {
 $output .= $key . ': ' . $value;
 }
 }
 }
 return $output;
}

11.	 Still within the Message class, we now turn our attention to version handling.
According to PSR-7, the return value for the protocol version (that is, HTTP/1.1)
should only be the numerical part. For this reason, we also provide onlyVersion()
that strips off any non-digit character, allowing periods:
public function getProtocolVersion()
{
 if (!$this->version) {
 $this->version = $this->onlyVersion(
 $_SERVER['SERVER_PROTOCOL']);
 }
 return $this->version;
}

public function withProtocolVersion($version)
{
 $this->version = $this->onlyVersion($version);
 return $this;
}

protected function onlyVersion($version)
{
 if (!empty($version)) {
 return preg_replace('/[^0-9\.]/', '', $version);
 } else {
 return NULL;

Appendix

563

 }
}

}

12.	 Finally, almost as an anticlimax, we are ready to define our Request class. It must
be noted here, however, that we need to consider both out-bound as well as in-bound
requests. That is to say, we need a class to represent an outgoing request a client will
make to a server, as well as a request received from a client by a server. Accordingly,
we provide Application\MiddleWare\Request (requests a client will make to
a server), and Application\MiddleWare\ServerRequest (requests received
from a client by a server). The good news is that most of our work has already been
done: notice that our Request class extends Message. We also provide properties to
represent the URI and HTTP method:
namespace Application\MiddleWare;

use InvalidArgumentException;
use Psr\Http\Message\ { RequestInterface, StreamInterface,
UriInterface };

class Request extends Message implements RequestInterface
{
 protected $uri;
 protected $method; // HTTP method
 protected $uriObj; // Psr\Http\Message\UriInterface instance

13.	 All properties in the constructor default to NULL, but we leave open the
possibility of defining the appropriate arguments right away. We use the inherited
onlyVersion() method to sanitize the version. We also define checkMethod() to
make sure any method supplied is on our list of supported HTTP methods, defined as
a constant array in Constants:
public function __construct($uri = NULL,
 $method = NULL,
 StreamInterface $body = NULL,
 $headers = NULL,
 $version = NULL)
{
 $this->uri = $uri;
 $this->body = $body;
 $this->method = $this->checkMethod($method);
 $this->httpHeaders = $headers;
 $this->version = $this->onlyVersion($version);
}
protected function checkMethod($method)
{

Defining PSR-7 Classes

564

 if (!$method === NULL) {
 if (!in_array(strtolower($method), Constants::HTTP_METHODS)) {
 throw new InvalidArgumentException(
 Constants::ERROR_HTTP_METHOD);
 }
 }
 return $method;
}

14.	 We are going to interpret the request target as the originally requested URI in the
form of a string. Bear in mind that our Uri class has methods that will parse this
into its component parts, hence our provision of the $uriObj property. In the
case of withRequestTarget(), notice that we run getUri() that performs the
aforementioned parsing process:
public function getRequestTarget()
{
 return $this->uri ?? Constants::DEFAULT_REQUEST_TARGET;
}

public function withRequestTarget($requestTarget)
{
 $this->uri = $requestTarget;
 $this->getUri();
 return $this;
}

15.	 Our get and with methods, which represent the HTTP method, reveal no surprises.
We use checkMethod(), used in the constructor as well, to ensure the method
matches those we plan to support:
public function getMethod()
{
 return $this->method;
}

public function withMethod($method)
{
 $this->method = $this->checkMethod($method);
 return $this;
}

Appendix

565

16.	 Finally, we have a get and with method for the URI. As mentioned in step 14, we
retain the original request string in the $uri property and the newly parsed Uri
instance in $uriObj. Note the extra flag to preserve any existing Host header:
public function getUri()
{
 if (!$this->uriObj) {
 $this->uriObj = new Uri($this->uri);
 }
 return $this->uriObj;
}

public function withUri(UriInterface $uri, $preserveHost = false)
{
 if ($preserveHost) {
 $found = $this->findHeader(Constants::HEADER_HOST);
 if (!$found && $uri->getHost()) {
 $this->httpHeaders[Constants::HEADER_HOST] = $uri->getHost();
 }
 } elseif ($uri->getHost()) {
 $this->httpHeaders[Constants::HEADER_HOST] = $uri->getHost();
 }
 $this->uri = $uri->__toString();
 return $this;
 }
}

17.	 The ServerRequest class extends Request and provides additional functionality
to retrieve information of interest to a server handling an incoming request. We start
by defining properties that will represent incoming data read from the various PHP $_
super-globals (that is, $_SERVER, $_POST, and so on):
namespace Application\MiddleWare;
use Psr\Http\Message\ { ServerRequestInterface,
UploadedFileInterface } ;

class ServerRequest extends Request implements
ServerRequestInterface
{

 protected $serverParams;
 protected $cookies;
 protected $queryParams;
 protected $contentType;

Defining PSR-7 Classes

566

 protected $parsedBody;
 protected $attributes;
 protected $method;
 protected $uploadedFileInfo;
 protected $uploadedFileObjs;

18.	 We then define a series of getters to pull super-global information. We do not show
everything, to conserve space:
public function getServerParams()
{
 if (!$this->serverParams) {
 $this->serverParams = $_SERVER;
 }
 return $this->serverParams;
}
// getCookieParams() reads $_COOKIE
// getQueryParams() reads $_GET
// getUploadedFileInfo() reads $_FILES

public function getRequestMethod()
{
 $method = $this->getServerParams()['REQUEST_METHOD'] ?? '';
 $this->method = strtolower($method);
 return $this->method;
}

public function getContentType()
{
 if (!$this->contentType) {
 $this->contentType =
 $this->getServerParams()['CONTENT_TYPE'] ?? '';
 $this->contentType = strtolower($this->contentType);
 }
 return $this->contentType;
}

19.	 As uploaded files are supposed to be represented as independent UploadedFile
objects (presented in the previous recipe), we also define a method that takes
$uploadedFileInfo and creates UploadedFile objects:
public function getUploadedFiles()
{
 if (!$this->uploadedFileObjs) {

Appendix

567

 foreach ($this->getUploadedFileInfo() as $field => $value) {
 $this->uploadedFileObjs[$field] =
 new UploadedFile($field, $value);
 }
 }
 return $this->uploadedFileObjs;
}

20.	 As with the other classes defined previously, we provide with methods that add or
overwrite properties and return the new instance:
public function withCookieParams(array $cookies)
{
 array_merge($this->getCookieParams(), $cookies);
 return $this;
}
public function withQueryParams(array $query)
{
 array_merge($this->getQueryParams(), $query);
 return $this;
}
public function withUploadedFiles(array $uploadedFiles)
{
 if (!count($uploadedFiles)) {
 throw new InvalidArgumentException(
 Constant::ERROR_NO_UPLOADED_FILES);
 }
 foreach ($uploadedFiles as $fileObj) {
 if (!$fileObj instanceof UploadedFileInterface) {
 throw new InvalidArgumentException(
 Constant::ERROR_INVALID_UPLOADED);
 }
 }
 $this->uploadedFileObjs = $uploadedFiles;
}

21.	 One important aspect of PSR-7 messages is that the body should also be available
in a parsed manner, that is to say, a sort of structured representation rather than
just a raw stream. Accordingly, we define getParsedBody() and its accompanying
with method. The PSR-7 recommendations are quite specific when it comes to form
posting. Note the series of if statements that check the Content-Type header as
well as the method:
public function getParsedBody()
{
 if (!$this->parsedBody) {

Defining PSR-7 Classes

568

 if (($this->getContentType() ==
 Constants::CONTENT_TYPE_FORM_ENCODED
 || $this->getContentType() ==
 Constants::CONTENT_TYPE_MULTI_FORM)
 && $this->getRequestMethod() ==
 Constants::METHOD_POST)
 {
 $this->parsedBody = $_POST;
 } elseif ($this->getContentType() ==
 Constants::CONTENT_TYPE_JSON
 || $this->getContentType() ==
 Constants::CONTENT_TYPE_HAL_JSON)
 {
 ini_set("allow_url_fopen", true);
 $this->parsedBody =
 json_decode(file_get_contents('php://input'));
 } elseif (!empty($_REQUEST)) {
 $this->parsedBody = $_REQUEST;
 } else {
 ini_set("allow_url_fopen", true);
 $this->parsedBody = file_get_contents('php://input');
 }
 }
 return $this->parsedBody;
}

public function withParsedBody($data)
{
 $this->parsedBody = $data;
 return $this;
}

22.	 We also allow for attributes that are not precisely defined in PSR-7. Rather, we
leave this open so that the developer can provide whatever is appropriate for the
application. Notice the use of withoutAttributes() that allows you to remove
attributes at will:
public function getAttributes()
{
 return $this->attributes;
}
public function getAttribute($name, $default = NULL)
{
 return $this->attributes[$name] ?? $default;
}

Appendix

569

public function withAttribute($name, $value)
{
 $this->attributes[$name] = $value;
 return $this;
}
public function withoutAttribute($name)
{
 if (isset($this->attributes[$name])) {
 unset($this->attributes[$name]);
 }
 return $this;
}

}

23.	 Finally, in order to load the different properties from an in-bound request, we define
initialize(), which is not in PSR-7, but is extremely convenient:

public function initialize()
{
 $this->getServerParams();
 $this->getCookieParams();
 $this->getQueryParams();
 $this->getUploadedFiles;
 $this->getRequestMethod();
 $this->getContentType();
 $this->getParsedBody();
 return $this;
}

How it works...
First, be sure to complete the preceding recipe, as the Message and Request classes
consume Uri, Stream, and UploadedFile value objects. After that, go ahead and define
the classes summarized in the following table:

Class Steps they are discussed in
Application\MiddleWare\Message 2 to 9
Application\MiddleWare\Request 10 to 14
Application\MiddleWare\ServerRequest 15 to 20

Defining PSR-7 Classes

570

After that, you can define a server program, chap_09_middleware_server.php, which
sets up autoloading and uses the appropriate classes. This script will pull the incoming
request into a ServerRequest instance, initialize it, and then use var_dump() to show
what information was received:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\MiddleWare\ServerRequest;

$request = new ServerRequest();
$request->initialize();
echo '<pre>', var_dump($request), '</pre>';

To run the server program, first change to the /path/to/source/for/this/chapter
folder. You can then run the following command:

php -S localhost:8080 chap_09_middleware_server.php'

As for the client, first create a calling program, chap_09_middleware_request.php, that
sets up autoloading, uses the appropriate classes, and defines the target server and a local
text file:

<?php
define('READ_FILE', __DIR__ . '/gettysburg.txt');
define('TEST_SERVER', 'http://localhost:8080');
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\MiddleWare\ { Request, Stream, Constants };

Next, you can create a Stream instance using the text as a source. This will become the body
of a new Request, which, in this case, mirrors what might be expected for a form posting:

$body = new Stream(READ_FILE);

You can then directly build a Request instance, supplying parameters as appropriate:

$request = new Request(
 TEST_SERVER,
 Constants::METHOD_POST,
 $body,
 [Constants::HEADER_CONTENT_TYPE =>
 Constants::CONTENT_TYPE_FORM_ENCODED,
 Constants::HEADER_CONTENT_LENGTH => $body->getSize()]
);

Appendix

571

Alternatively, you can use the fluent interface syntax to produce exactly the same results:

$uriObj = new Uri(TEST_SERVER);
$request = new Request();
$request->withRequestTarget(TEST_SERVER)
 ->withMethod(Constants::METHOD_POST)
 ->withBody($body)
 ->withHeader(Constants::HEADER_CONTENT_TYPE,
 Constants::CONTENT_TYPE_FORM_ENCODED)
 ->withAddedHeader(
 Constants::HEADER_CONTENT_LENGTH, $body->getSize());

You can then set up a cURL resource to simulate a form posting, where the data parameter is
the contents of the text file. You can follow that with curl_init(), curl_exec(), and so
on, echoing the results:

$data = http_build_query(['data' =>
 $request->getBody()->getContents()]);
$defaults = array(
 CURLOPT_URL => $request->getUri()->getUriString(),
 CURLOPT_POST => true,
 CURLOPT_POSTFIELDS => $data,
);
$ch = curl_init();
curl_setopt_array($ch, $defaults);
$response = curl_exec($ch);
curl_close($ch);

Here is how the direct output might appear:

Defining PSR-7 Classes

572

See also
ff An excellent article that shows example usage written by Matthew Weir O'Phinney,

the editor of PSR-7 (also the lead architect for Zend Framework 1, 2, and 3), is
available here: https://mwop.net/blog/2015-01-26-psr-7-by-example.
html

Defining a PSR-7 Response class
The Response class represents outbound information returned to whatever entity made the
original request. HTTP headers play an important role in this context as we need to know
that format is requested by the client, usually in the incoming Accept header. We then need
to set the appropriate Content-Type header in the Response class to match that format.
Otherwise, the actual body of the response will be HTML, JSON, or whatever else has been
requested (and delivered).

How to do it...
1.	 The Response class is actually much easier to implement than the Request class

as we are only concerned with returning the response from the server to the client.
Additionally, it extends our Application\MiddleWare\Message class where
most of the work has been done. So, all that remains to be done is to define an
Application\MiddleWare\Response class. As you will note, the only unique
property is $statusCode:
namespace Application\MiddleWare;
use Psr\Http\Message\ { Constants, ResponseInterface,
StreamInterface };
class Response extends Message implements ResponseInterface
{
 protected $statusCode;

2.	 The constructor is not defined by PSR-7, but we provide it for convenience, allowing a
developer to create a Response instance with all parts intact. We use methods from
Message and constants from the Constants class to verify the arguments:
public function __construct($statusCode = NULL,
 StreamInterface $body = NULL,
 $headers = NULL,
 $version = NULL)
{
 $this->body = $body;
 $this->status['code'] = $statusCode
 ?? Constants::DEFAULT_STATUS_CODE;
 $this->status['reason'] =

https://mwop.net/blog/2015-01-26-psr-7-by-example.html
https://mwop.net/blog/2015-01-26-psr-7-by-example.html

Appendix

573

 Constants::STATUS_CODES[$statusCode] ?? '';
 $this->httpHeaders = $headers;
 $this->version = $this->onlyVersion($version);
 if ($statusCode) $this->setStatusCode();
}

3.	 We provide a nice way to set the HTTP status code, irrespective of any headers, using
http_response_code(), available from PHP 5.4 onwards. As this work is on PHP
7, we are safe in the knowledge that this method exists:
public function setStatusCode()
{
 http_response_code($this->getStatusCode());
}

4.	 Otherwise, it is of interest to obtain the status code using the following method:
public function getStatusCode()
{
 return $this->status['code'];
}

5.	 As with the other PSR-7-based classes discussed in earlier recipes, we also define a
with method that sets the status code and returns the current instance. Note the
use of STATUS_CODES to confirm its existence:
public function withStatus($statusCode, $reasonPhrase = '')
{
 if (!isset(Constants::STATUS_CODES[$statusCode])) {
 throw new InvalidArgumentException(
 Constants::ERROR_INVALID_STATUS);
 }
 $this->status['code'] = $statusCode;
 $this->status['reason'] = ($reasonPhrase)
 ? Constants::STATUS_CODES[$statusCode] : NULL;
 $this->setStatusCode();
 return $this;
}

6.	 Finally, we define a method that returns the reason for the HTTP status, which is a
short text phrase, in this example, based on RFC 7231. Note the use of the PHP 7
null coalesce operator ?? that returns the first non-null item out of three possible
choices:

public function getReasonPhrase()
{
 return $this->status['reason']

Defining PSR-7 Classes

574

 ?? Constants::STATUS_CODES[$this->status['code']]
 ?? '';
 }
}

How it works…
First of all, be sure to define the classes discussed in the previous two recipes. After that,
you can create another simple server program, chap_09_middleware_server_with_
response.php, which sets up autoloading and uses the appropriate classes:

<?php
require __DIR__ . '/../Application/Autoload/Loader.php';
Application\Autoload\Loader::init(__DIR__ . '/..');
use Application\MiddleWare\ { Constants, ServerRequest, Response,
 Stream };

You can then define an array with key/value pairs, where the value points to a text file in the
current directory to be used as content:

$data = [
 1 => 'churchill.txt',
 2 => 'gettysburg.txt',
 3 => 'star_trek.txt'
];

Next, inside a try…catch block, you can initialize some variables, initialize the server
request, and set up a temporary filename:

try {

 $body['text'] = 'Initial State';
 $request = new ServerRequest();
 $request->initialize();
 $tempFile = bin2hex(random_bytes(8)) . '.txt';
 $code = 200;

After that, check to see whether the method is GET or POST. If it's GET, check to see whether
an id parameter was passed. If so, return the body of the matching text file. Otherwise, return
a list of text files:

if ($request->getMethod() == Constants::METHOD_GET) {
 $id = $request->getQueryParams()['id'] ?? NULL;
 $id = (int) $id;
 if ($id && $id <= count($data)) {
 $body['text'] = file_get_contents(

Appendix

575

 __DIR__ . '/' . $data[$id]);
 } else {
 $body['text'] = $data;
 }

Otherwise, return a response indicating a success code 204 and the size of the request body
received:

} elseif ($request->getMethod() == Constants::METHOD_POST) {
 $size = $request->getBody()->getSize();
 $body['text'] = $size . ' bytes of data received';
 if ($size) {
 $code = 201;
 } else {
 $code = 204;
 }
}

You can then catch any exceptions and report them with a status code of 500:

} catch (Exception $e) {
 $code = 500;
 $body['text'] = 'ERROR: ' . $e->getMessage();
}

The response needs to be wrapped in a stream, so you can write the body out to the temp
file and create it as Stream. You can also set the Content-Type header to application/
json and run getHeaders(), which outputs the current set of headers. After that, echo the
body of the response. For this illustration, you could also dump the Response instance to
confirm it was constructed correctly:

try {
 file_put_contents($tempFile, json_encode($body));
 $body = new Stream($tempFile);
 $header[Constants::HEADER_CONTENT_TYPE] = 'application/json';
 $response = new Response($code, $body, $header);
 $response->getHeaders();
 echo $response->getBody()->getContents() . PHP_EOL;
 var_dump($response);

To wrap things up, catch any errors or exceptions using Throwable, and don't forget to delete
the temp file:

} catch (Throwable $e) {
 echo $e->getMessage();
} finally {
 unlink($tempFile);
}

Defining PSR-7 Classes

576

To test, it's just a matter of opening a terminal window, changing to the /path/to/source/
for/this/chapter directory, and running the following command:

php -S localhost:8080

From a browser, you can then call this program, adding an id parameter. You might consider
opening the developer tools to monitor the response header. Here is an example of the
expected output. Note the content type of application/json:

See also
ff For more information on PSR, please visit http://www.php-fig.org/psr/.

ff The following table summarizes the state of PSR-7 compliance at the time of writing.
The frameworks not included in this table either do not have PSR-7 support at all, or
lack documentation for PSR-7.

http://www.php-fig.org/psr/

Appendix

577

Framework Website Notes
Slim http://www.slimframework.

com/docs/concepts/value-
objects.html

High PSR-7 compliance

Laravel/Lumen https://lumen.laravel.
com/docs/5.2/requests

High PSR-7 compliance

Zend Framework 3/
Expressive

https://framework.zend.
com/blog/2016-06-28-
zend-framework-3.html or
https://zendframework.
github.io/zend-
expressive/ respectively

High PSR-7 compliance

Also Diactoros, and
Straigility

Zend Framework 2 https://github.com/
zendframework/zend-
psr7bridge

PSR-7 bridge available

Symfony http://symfony.com/doc/
current/cookbook/psr7.
html

PSR-7 bridge available

Joomla https://www.joomla.org Limited PSR-7 support
Cake PHP http://mark-story.com/

posts/view/psr7-bridge-
for-cakephp

PSR-7 support is in the
roadmap and will use the
bridge approach

ff There are a number of PSR-7 middleware classes already available. The following
table summarizes some of the more popular ones:

Middleware Website Notes
Guzzle https://github.com/guzzle/

psr7
HTTP message library

Relay http://relayphp.com/ Dispatcher
Radar https://github.com/

radarphp/Radar.Project
Action/domain/
responder skeleton

NegotiationMiddleware https://github.com/rszrama/
negotiation-middleware

Content negotiation

psr7-csrf-middleware https://packagist.org/
packages/schnittstabil/
psr7-csrf-middleware

Cross Site Request
Forgery prevention

oauth2-server http://alexbilbie.
com/2016/04/league-oauth2-
server-version-5-is-out

OAuth2 server which
supports PSR-7

zend-diactoros https://zendframework.
github.io/zend-diactoros/

PSR-7 HTTP message
implementation

http://www.slimframework.com/docs/concepts/value-objects.html
http://www.slimframework.com/docs/concepts/value-objects.html
http://www.slimframework.com/docs/concepts/value-objects.html
https://lumen.laravel.com/docs/5.2/requests
https://lumen.laravel.com/docs/5.2/requests
https://framework.zend.com/blog/2016-06-28-zend-framework-3.html
https://framework.zend.com/blog/2016-06-28-zend-framework-3.html
https://framework.zend.com/blog/2016-06-28-zend-framework-3.html
https://zendframework.github.io/zend-expressive/
https://zendframework.github.io/zend-expressive/
https://zendframework.github.io/zend-expressive/
https://github.com/zendframework/zend-psr7bridge
https://github.com/zendframework/zend-psr7bridge
https://github.com/zendframework/zend-psr7bridge
http://symfony.com/doc/current/cookbook/psr7.html
http://symfony.com/doc/current/cookbook/psr7.html
http://symfony.com/doc/current/cookbook/psr7.html
https://www.joomla.org
http://mark-story.com/posts/view/psr7-bridge-for-cakephp
http://mark-story.com/posts/view/psr7-bridge-for-cakephp
http://mark-story.com/posts/view/psr7-bridge-for-cakephp
https://github.com/guzzle/psr7
https://github.com/guzzle/psr7
http://relayphp.com/
https://github.com/radarphp/Radar.Project
https://github.com/radarphp/Radar.Project
https://github.com/rszrama/negotiation-middleware
https://github.com/rszrama/negotiation-middleware
https://packagist.org/packages/schnittstabil/psr7-csrf-middleware
https://packagist.org/packages/schnittstabil/psr7-csrf-middleware
https://packagist.org/packages/schnittstabil/psr7-csrf-middleware
http://alexbilbie.com/2016/04/league-oauth2-server-version-5-is-out
http://alexbilbie.com/2016/04/league-oauth2-server-version-5-is-out
http://alexbilbie.com/2016/04/league-oauth2-server-version-5-is-out
https://zendframework.github.io/zend-diactoros/
https://zendframework.github.io/zend-diactoros/

579

Index
Symbols
$aad parameter 480
$_POST data

filtering 436-440
validating 440-443

$_POST filters
chaining 196-204
working 205-209

$_POST validators
chaining 210-215

$tag_length parameter 480
$tag parameter 480
$this keyword

reference link 88
*AMP packages

AMPPS, reference link 4
EasyPHP, reference link 5
MAMP, reference link 5
WampServer, reference link 5
XAMPP, reference link 4
Zend Server, reference link 5

__call() method 358

A
abstract method 90
Abstract Syntax Tree. See AST
Accept-Language header

reference link 266
Access Control List (ACL) mechanism

implementing, with middleware 314-322
Adapter 227
Advanced Encryption Standard (AES)

about 475
reference link 481

Alternate PHP Cache (APC) 336
Altorouter

reference link 342
Amazon Mechanical Turk

reference link 305
AMP 4
anonymous classes

about 81, 122
implementing 122-127

Apache, MySQL, and PHP (also Perl
and Python). See AMP

API key
creating, reference link 235

Apple Developer Tools 2
Application Programming Interface

(API) 109, 130, 237
array

creating, to object hydrator 392-394
array hydrator

object, building to 395, 396
assertions

about 497
reference link 515

AST
about 26-28
reference link 30
working 28-30

asynchronous communications 429
Asynchronous JavaScript and XML (AJAX)

about 168
reference link 171

Aura.Router
reference link 342

580

Authenticated Encrypt with Associated Data
(AEAD) 480

authority 540
autoloading process 101

B
backwards incompatible changes

reference link 23
binary search

reference link 377
binary search class

building 373-377
block cipher

reference link 481
BlowFish (BF) 475
browser data

locale, obtaining 263-265
brute force attacks

about 455
reference link 460

bubble sort
building 368-370

built-in PHP web server
using 6, 7

C
cache

used, for improving performance 323-336
Cake PHP framework

reference link 577
callable 26
CAMELLIA 475
CAPTCHA

about 435, 461
reference link 474
used, for safeguarding forms 461

CAST5 475
Cipher Block Chaining - Message

Authentication Code (CC-MAC) 477
class autoloading

implementing 9-12
classes

developing 82-88
extending 88-95

Comma Separated Values (CSV) 44
Completely Automated Public Turing Test to

Tell Computers and Humans Apart. See
CAPTCHA

complex characters
converting 260-262

Composer
reference link 346

composer.json file directives
reference link 515

constant visibility
reference link 109

context sensitive lexer
about 143
reference link 146

C program
compiling, reference link 5

Cross Site Request Forgery (CSRF)
about 435, 449
reference link 455

Cross-site scripting (XSS) 444
Cryptographically Secure Pseudo Random

Number Generator (CSPRNG) 457
CSPRNG 477
currency

formatting, by locale 271-275
handling, by locale 270

cursor 132

D
database

connecting, PHP Data Objects (PDO)
used 130-143

spreadsheet, uploading into 44-47
database tables

representation, by defining entities 150-155
Data Encryption Standard (DES) 475
data mapper 407
Data Source Name (DSN) 130
Data Transfer Object design pattern 392
data types

hinting at 59-62
date formats

reference link 280

581

date/time
formatting, by locale 276-279

Debian
reference link 3

decryption
without using mcrypt 475-480

deep iteration 71
deep web scanner

building 15-17
delegating generator 201
dereferencing process 26
DocBlock 82, 83
Docker

reference link 5
Doctrine

reference links 428
domain model

about 150
reference links 155

E
emoji

codes, reference link 260
using, in view script 258-260

emoticons
using, in view script 258-260

encryption
operation modes, reference link 481
without using mcrypt 475-480

entities
defining, to match database tables 150-155

entity classes
about 150
linking, to RDBMS queries 155-162

errors, configuration stage
about 2, 3
reference link 2, 3

eXtensible Markup Language (XML) 223

F
Factory design pattern 97
fake test data

generating 518-530
reference links 530

FastRoute
reference link 342

Fedora / Red Hat
reference link 4

fetch mode 132
fetchObject()

reference link 163
filter_input_array()

reference link 209
filters

reference link 209
fluent interface 415
font protection

reference link 475
foreach() handling

differences 32-35
form factory

implementing 190-195
forms

safeguarding, with CAPTCHA 461
securing, with token 449-455
validation, connecting to 215-221

forms, safeguarding
CAPTCHA, using 461
image CAPTCHA, generating 465-474
text CAPTCHA, generating 461-464

functional programming 53
functions

about 53
best practice 56
developing 54-58

G
generator

about 75
used, for writing own iterator 75-78

generic form element generator
creating 174-179
working 179, 180

getter
about 356
using 356-361

582

gettext
avoiding, in translation 297-305
reference link 305

glob() function 47
GNU Compiler Collection (GCC) 2
GNU project 2
Google Translation API

reference link 305
group use feature 101, 104

H
heredoc 259
host 541
HTML international calendar generator

creating 280-283
internationalized output, refining 284-288

HTML radio element generator
creating 181-185

HTML select element generator
creating 185-190

HTTP PUT
reference link 237

HTTP status codes
reference link 540

hydration 151
Hydrator pattern 392
HyperText Transfer Protocol (HTTP) 227

I
improvements

dead weight, reference link 41
fast parameter parsing, reference link 40
PHP NG, reference link 40

initialization vector (IV) 476
interfaces

using 109-115, 484-488
inter-framework system calls

making 342-350
International Components for Unicode (ICU)

reference links 270
Internationalization (I18n) 263
International Standards Organization

(ISO)
reference link 276

Internet Engineering Task Force (IETF) 307
IntlCalendar field constants

reference link 297
iterator 67-74

J
JavaScript Object Notation (JSON) 498
Joomla! installation

modifying 346
jQuery

reference link 171
jQuery DataTables

about 168
reference link 171

jQuery DataTables PHP lookups
implementing 168-171

L
Laravel/Lumen framework

reference link 577
Last In First Out (LIFO) 371
Late Static Binding

about 97
reference link 100

LimitIterator class
reference link 150

linked list
about 368
implementing 362-367
reference link 367

locale
about 257
currency, handling by 270-275
date/time, formatting by 276-279
number, formatting by 266-270
obtaining, from browser data 263-265

M
magic method 357
mapper

defining 407-417
massive file

iterating through 41-44

583

mcrypt
avoiding, in decryption 475-479
avoiding, in encryption 475-479
reference link 481

methods
about 82
using 96-100

middleware
about 307
used, for authentication 308-314
used, for crossing languages 350-353
used, for implementing Access Control List

(ACL) mechanism 314-322
MinGW

about 2
reference link 5

mock classes 504
mode of operation 476
modes

Cipher Block Chaining (CBC) 476
Cipher Feedback (CFB) 476
Counter (CTR) 477
Counter with CBC-MAC (CCM) 477
Electronic Code Book (ECB) 476
Galois/Counter Mode (GM) 477
Output Feedback (OFB) 477
XTS 477

msgid (message ID)
building 298

msgstr (message string) 298
multi-dimensional array

displaying 384-390
MySQL database 130

N
named placeholders 139
namespaces

using 100-104
naming collision 112
NGINX web server

reference link 342
nullable types

about 63
reference link 67

null coalesce operator (??) 77
number

formatting, by locale 266-270

O
object

building, to array hydrator 395, 396
object hydrator

array, creating 392-394
object-oriented programming (OOP) 9, 391
object-relational mapping

all child information, preloading 418-422
implementing 418
secondary lookups, embedding 423-428

Observer 434
oclHashcat

reference link 460
OOP SQL query builder

building 143-146
OpenSUSE

reference link 4
OS platforms

security considerations, reference link 5
own iterator

writing, with generator 75-78

P
pagination

about 146
handling 146-150

parameters 54
parsing

differences 30-32
password cracking approach

reference link 460
path 542
performance

improving, with cache 323-336
improving, with PHP 7 enhancements 36-40

Personal Package Archive (PPA)
security considerations, reference link 5

phar (PHP archive) file 497
PHP

converting, to XML 223-226

584

PHP 5 to PHP 7 code converter
creating 18-23

PHP 7
*AMP package, installing 4, 5
about 257
acquiring, ways 1
installation considerations 2
installing, directly from source 2, 3
installing, from pre-compiled binaries 3, 4

php7cookbook.sql file
reference link 8

PHP 7 enhancements
used, for improving performance 36-40

PHP Archive 8
PHP Data Objects (PDO)

about 129
PDO class 130
PDODriver class 130
PDOException class 130
PDOStatement class 130
predefined constants, reference link 143
reference link 143
used, for connecting database 130

phpDocumentor
reference link 255

PHP Framework Interop Group (PHP-FIG) 342
php.ini session directives

reference link 532
PHP Locale class

reference link 266
PHP NG (Next Generation) 40
PHP RFC

reference link 480
PHP session

safeguarding 443-449
PHP Standard Recommendation number 7.

See PSR-7
PHP streams

reference link 557
PHPUnit

about 497
installing 8
reference link 8, 497

PHPUnit test suites
reference link 518

port 541
positional placeholders 139
POST

reference link 237
PostgreSQL 131
pre-compiled binaries 3
properties 82
PSR

reference link 557-576
PSR-6

reference link 336
PSR-7

about 307, 537
interfaces, reference link 554
reference link 538
Request class, developing 557-572
Response class, defining 572-576
value object classes, implementing 537-557

PSR-7 middleware classes
Guzzle, reference link 577
NegotiationMiddleware, reference link 577
oauth2-server, reference link 577
psr7-csrf-middleware, reference link 577
Radar, reference link 577
Relay, reference link 577
zend-diactoros, reference link 577

Pub/Sub design pattern
about 429
implementing 429-434
reference link 434

Q
query results

secondary lookups, embedding into 164-167

R
rainbow tables 455
RDBMS queries

entity classes, linking to 155-163
recurring events generator

building 289-296
recursion 55
recursive directory iterator 47-51
recursive iterators 71

585

Relational Database Management Systems
(RDBMS)

about 130
reference link 163

relational model
about 156
reference link 163

repository 156
Representational State Transfer (REST) 223
Request class, PSR-7

about 557
developing 557-572

resolution operator 98
Response class, PSR-7

defining 572-576
reference link 572

REST client
creating 227-230
cURL-based REST client, defining 233, 234
streams-based REST client,

creating 231, 232
working 235

REST server
creating 237-244
working 245, 246

return type declarations
reference links 66

return value data typing
reference link 66
using 63-66

RFC
reference link 36

Rivest Cipher (RC) 475
Ron's Code 475
root locale code 264
routing

about 336
implementing 336-341

S
scalar 59
scalar type hinting

reference link 63
scheme 540
scrollable cursor 135

search engine
implementing 377-383

Search Engine Optimization (SEO) 336
secondary lookups

embedding, into query results 164-167
secure password generator

building 455-460
SEED 475
session hijacking

reference link 449
session-related php.ini directives

reference link 535
sessions

customizing, with session_start
params 531-535

session_start params
used, for customizing sessions 531-535

set_exception_handler() function
reference link 493

setlocale()
reference link 270

setter
about 356
using 356-360

shallow iteration 71
simple test

anonymous classes, using as mock
objects 507, 508

assertions test operations 514
database model classes, testing 502-512
Mock Builder, using 508, 509
mock classes, using 504-513
running 499-511
writing 497, 498

Singleton 10
Slim framework

reference link 577
SOAP client

creating 247, 248
working 249, 250

SOAP server
creating 250-255

SOAP service
reference link 226

software design patterns 391

586

spaceship operator 375
spreadsheet

uploading, into database 44-47
SQL Injection 134
SQlite 131
stack

about 371
implementing 371, 372

Standard PHP Library (SPL) 11, 42, 429
static properties

about 97-100
using 96

strategy pattern
implementing 397-406

Streams
about 231
reference link 237

Structured Query Language (SQL) 129
sub-generator 201
Symfony framework

reference link 577
Synaptic 3

T
test MySQL database

defining 7, 8
reference link 7

test suite
about 515
writing 515-518

thread safe
versus non thread safe 3

token
used, for securing forms 449-455

totals
accumulating 384-390

traits
using 115-121, 484-488

translation
handling, without gettext 297-305

traverse 67
TreeRoute

reference link 342
Turbo C compiler 2

type hint 59, 186

U
Ubuntu

reference link 4
Unicode escape syntax 257
Uniform Resource Indicator (URI)

reference link 540
Uniform Variable Syntax

reference link 32
unit testing

about 497
reference link 515

universal error handler
using 493-496

universal exception handler
using 489-493

URL rewriting 336
user info 541
UTF-8 12

V
Vagrant

reference link 5
validation

and filtering, differentiating between 197
connecting, to form 215-220

value object classes, PSR-7
implementing 537-557
reference link 554

view script
emoji, using 258-260
emoticons, using 258-260

visibility
defining 105-109

Visual Studio 2

W
Web Services Definition Language

 (WSDL) 226, 247
website

hoovering 12-14

587

website vulnerabilities
reference link 449

Windows
reference link 3

World Wide Web (WWW) 16

X
Xcode IDE 2
XLS 276
XML

about 276
PHP, converting to 223-226

Y
YaST 4

Z
Zend Expressive 345
Zend Framework 3/Expressive framework

reference link 577
zero configuration data

reference link 171

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Foundation
	Introduction
	PHP 7 installation considerations
	Using the built-in PHP web server
	Defining a test MySQL database
	Installing PHPUnit
	Implementing class autoloading
	Hoovering a website
	Building a deep web scanner
	Creating a PHP 5 to PHP 7 code converter

	Chapter 2: Using PHP 7 High Performance Features
	Introduction
	Understanding the abstract syntax tree
	Understanding differences in parsing
	Understanding differences in foreach() handling
	Improving performance using PHP 7 enhancements
	Iterating through a massive file
	Uploading a spreadsheet into a database
	Recursive directory iterator

	Chapter 3: Working with PHP Functional Programming
	Introduction
	Developing functions
	Hinting at data types
	Using return value data typing
	Using iterators
	Writing your own iterator using generators

	Chapter 4: Working with PHP Object-Oriented Programming
	Introduction
	Developing classes
	Extending classes
	Using static properties and methods
	Using namespaces
	Defining visibility
	Using interfaces
	Using traits
	Implementing anonymous classes

	Chapter 5: Interacting with a Database
	Introduction
	Using PDO to connect to a database
	Building an OOP SQL query builder
	Handling pagination
	Defining entities to match database tables
	Tying entity classes to RDBMS queries
	Embedding secondary lookups into query results
	Implementing jQuery DataTables PHP lookups

	Chapter 6: Building Scalable Websites
	Introduction
	Creating a generic form element generator
	Creating an HTML radio element generator
	Creating an HTML select element generator
	Implementing a form factory
	Chaining $_POST filters
	Chaining $_POST validators
	Tying validation to a form

	Chapter 7: Accessing Web Services
	Introduction
	Converting between PHP and XML
	Creating a simple REST client
	Creating a simple REST server
	Creating a simple SOAP client
	Creating a simple SOAP server

	Chapter 8: Working with Date/Time and International Aspects
	Introduction
	Using emoticons or emoji in a view script
	Converting complex characters
	Getting the locale from browser data
	Formatting numbers by locale
	Handling currency by locale
	Formatting date/time by locale
	Creating an HTML international calendar generator
	Building a recurring events generator
	Handling translation without gettext

	Chapter 9: Developing Middleware
	Introduction
	Authenticating with middleware
	Using middleware to implement access control
	Improving performance using the cache
	Implementing routing
	Making inter-framework system calls
	Using middleware to cross languages

	Chapter 10: Looking at Advanced Algorithms
	Introduction
	Using getters and setters
	Implementing a linked list
	Building a bubble sort
	Implementing a stack
	Building a binary search class
	Implementing a search engine
	Displaying a multi-dimensional array and accumulating totals

	Chapter 11: Implementing Software Design Patterns
	Introduction
	Creating an array to object hydrator
	Building an object to array hydrator
	Implementing a strategy pattern
	Defining a mapper
	Implementing object-relational mapping
	Implementing the Pub/Sub design pattern

	Chapter 12: Improving Web Security
	Introduction
	Filtering $_POST data
	Validating $_POST data
	Safeguarding the PHP session
	Securing forms with a token
	Building a secure password generator
	Safeguarding forms with a CAPTCHA
	Encrypting/decrypting without mcrypt

	Chapter 13: Best Practices, Testing, and Debugging
	Introduction
	Using Traits and Interfaces
	Universal exception handler
	Universal error handler
	Writing a simple test
	Writing a test suite
	Generating fake test data
	Customizing sessions using session_start parameters

	Appendix: Defining PSR-7 Classes
	Introduction
	Implementing PSR-7 value object classes
	Developing a PSR-7 Request class
	Defining a PSR-7 Response class

	Index

